Stephen B Liggett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amino-Terminal Polymorphisms of the Human .beta.2-Adrenergic Receptor Impart Distinct Agonist-Promoted Regulatory Properties. Biochemistry, 1994, 33, 9414-9419.	1.2	745
2	Mutations in the Gene Encoding for the <i>β</i> ₂ -adrenergic Receptor in Normal and Asthmatic Subjects. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 334-339.	1.4	622
3	Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet, The, 2004, 364, 1505-1512.	6.3	592
4	PKC-α regulates cardiac contractility and propensity toward heart failure. Nature Medicine, 2004, 10, 248-254.	15.2	551
5	Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nature Medicine, 2010, 16, 1299-1304.	15.2	549
6	A Gain-of-function Polymorphism in a G-protein Coupling Domain of the Human β1-Adrenergic Receptor. Journal of Biological Chemistry, 1999, 274, 12670-12674.	1.6	540
7	Synergistic Polymorphisms of β1- and α2C-Adrenergic Receptors and the Risk of Congestive Heart Failure. New England Journal of Medicine, 2002, 347, 1135-1142.	13.9	529
8	A polymorphism within a conserved beta1-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11288-11293.	3.3	435
9	Sequencing and Analyses of All Known Human Rhinovirus Genomes Reveal Structure and Evolution. Science, 2009, 324, 55-59.	6.0	416
10	Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. Journal of Clinical Investigation, 2003, 111, 869-876.	3.9	380
11	β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nature Medicine, 2003, 9, 1300-1305.	15.2	328
12	Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Human Molecular Genetics, 2004, 13, 1353-1359.	1.4	315
13	PHARMACOLOGY ANDPHYSIOLOGY OFHUMANADRENERGICRECEPTORPOLYMORPHISMS. Annual Review of Pharmacology and Toxicology, 2003, 43, 381-411.	4.2	301
14	A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nature Medicine, 2008, 14, 510-517.	15.2	297
15	Phosphorylation and Desensitization of the Human β1-Adrenergic Receptor. Journal of Biological Chemistry, 1995, 270, 17953-17961.	1.6	284
16	Decompensation of Pressure-Overload Hypertrophy in Gαq-Overexpressing Mice. Circulation, 1998, 97, 1488-1495.	1.6	199
17	Amino Acid 49 Polymorphisms of the Human β 1 -Adrenergic Receptor Affect Agonist-Promoted Trafficking. Journal of Cardiovascular Pharmacology, 2002, 39, 155-160.	0.8	194
18	Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nature Medicine, 2011, 17, 627-632.	15.2	177

#	Article	IF	CITATIONS
19	A Four Amino Acid Deletion Polymorphism in the Third Intracellular Loop of the Human α2C-Adrenergic Receptor Confers Impaired Coupling to Multiple Effectors. Journal of Biological Chemistry, 2000, 275, 23059-23064.	1.6	171
20	Polymorphisms of the β ₂ -Adrenergic Receptor Determine Exercise Capacity in Patients With Heart Failure. Circulation Research, 2000, 86, 834-840.	2.0	171
21	Sequence, Haplotype, and Association Analysis ofADRβ2in a Multiethnic Asthma Case-Control Study. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1101-1109.	2.5	167
22	Polymorphic Deletion of Three Intracellular Acidic Residues of the α2B-Adrenergic Receptor Decreases G Protein-coupled Receptor Kinase-mediated Phosphorylation and Desensitization. Journal of Biological Chemistry, 2001, 276, 4917-4922.	1.6	137
23	Sustained Activation of a G Protein-coupled Receptor via "Anchored―Agonist Binding. Journal of Biological Chemistry, 1996, 271, 24029-24035.	1.6	135
24	Pharmacogenetics of Beta-1- and Beta-2-Adrenergic Receptors. Pharmacology, 2000, 61, 167-173.	0.9	133
25	Polymorphisms of the β1-adrenergic receptor predict exercise capacity in heart failure. American Heart Journal, 2002, 144, 840-846.	1.2	124
26	Lack of Association Between Adrenergic Receptor Genotypes and Survival in Heart Failure Patients Treated With Carvedilol or Metoprolol. Journal of the American College of Cardiology, 2008, 52, 644-651.	1.2	124
27	Extraoral bitter taste receptors as mediators of offâ€ŧarget drug effects. FASEB Journal, 2012, 26, 4827-4831.	0.2	123
28	β2-Adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. American Heart Journal, 2000, 139, 537-542.	1.2	121
29	Molecular properties and pharmacogenetics of a polymorphism of adenylyl cyclase type 9 in asthma: interaction between β-agonist and corticosteroid pathways. Human Molecular Genetics, 2005, 14, 1671-1677.	1.4	121
30	<i>ARG1</i> Is a Novel Bronchodilator Response Gene. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 688-694.	2.5	121
31	Phosphorylation Barcoding as a Mechanism of Directing GPCR Signaling. Science Signaling, 2011, 4, pe36.	1.6	118
32	Four Consecutive Serines in the Third Intracellular Loop Are the Sites for β-Adrenergic Receptor Kinase-mediated Phosphorylation and Desensitization of the α2A-Adrenergic Receptor. Journal of Biological Chemistry, 1995, 270, 4681-4688.	1.6	115
33	Protein Kinase Cα Negatively Regulates Systolic and Diastolic Function in Pathological Hypertrophy. Circulation Research, 2003, 93, 1111-1119.	2.0	114
34	Airway smooth muscle prostaglandin-EP1 receptors directly modulate Â2-adrenergic receptors within a unique heterodimeric complex. Journal of Clinical Investigation, 2006, 116, 1400-1409.	3.9	113
35	Antithetic regulation by β-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway β-agonist paradox. Journal of Clinical Investigation, 2003, 112, 619-626.	3.9	112
36	An α 2C -Adrenergic Receptor Polymorphism Alters the Norepinephrine-Lowering Effects and Therapeutic Response of the β-Blocker Bucindolol in Chronic Heart Failure. Circulation: Heart Failure, 2010, 3, 21-28.	1.6	103

#	Article	IF	CITATIONS
37	Effect of Polymorphism of the β ₂ -Adrenergic Receptor on Response to Regular Use of Albuterol in Asthma. International Archives of Allergy and Immunology, 2001, 124, 183-186.	0.9	102
38	Interactions Between Phospholamban and β-Adrenergic Drive May Lead to Cardiomyopathy and Early Mortality. Circulation, 2001, 103, 889-896.	1.6	100
39	Identification of a Gs Coupling Domain in the Amino Terminus of the Third Intracellular Loop of the α2A-Adrenergic Receptor. Journal of Biological Chemistry, 1995, 270, 24753-24760.	1.6	96
40	Cardiac Specific Overexpression of Transglutaminase II (Gh) Results in a Unique Hypertrophy Phenotype Independent of Phospholipase C Activation. Journal of Biological Chemistry, 1999, 274, 21291-21296.	1.6	94
41	Racial differences in the frequencies of cardiac ?1-adrenergic receptor polymorphisms: Analysis of c145A>G and c1165G>C. , 1999, 14, 271-271.		93
42	Analysis of the complete genome sequences of human rhinovirus. Journal of Allergy and Clinical Immunology, 2010, 125, 1190-1199.	1.5	93
43	Molecular and Functional Characterization of a Novel Cardiac-Specific Human Tropomyosin Isoform. Circulation, 2010, 121, 410-418.	1.6	89
44	Histamine N-methyltransferase pharmacogenetics: association of a common functional polymorphism with asthma. Pharmacogenetics and Genomics, 2000, 10, 261-266.	5.7	89
45	Effects of Thyroid Hormone on Cardiac β-Adrenergic Responsiveness in Conscious Baboons. Circulation, 1997, 96, 592-598.	1.6	89
46	Pharmacogenetic applications of the Human Genome project. Nature Medicine, 2001, 7, 281-283.	15.2	87
47	The Ile164 β2-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to Gs. European Journal of Pharmacology, 2001, 421, 141-147.	1.7	87
48	Dilated Cardiomyopathy Mutant Tropomyosin Mice Develop Cardiac Dysfunction With Significantly Decreased Fractional Shortening and Myofilament Calcium Sensitivity. Circulation Research, 2007, 101, 205-214.	2.0	86
49	Defining an olfactory receptor function in airway smooth muscle cells. Scientific Reports, 2016, 6, 38231.	1.6	83
50	The pharmacogenetics of β2-adrenergic receptors: Relevance to asthma. Journal of Allergy and Clinical Immunology, 2000, 105, S487-S492.	1.5	82
51	β2-Agonist Induced cAMP Is Decreased in Asthmatic Airway Smooth Muscle Due to Increased PDE4D. PLoS ONE, 2011, 6, e20000.	1.1	81
52	Chimeric Mutagenesis of Putative G-protein Coupling Domains of the α2A-Adrenergic Receptor. Journal of Biological Chemistry, 1996, 271, 12826-12832.	1.6	80
53	α2A-Adrenergic Receptor Stimulated Calcium Release Is Transduced by Gi-Associated Gβγ-Mediated Activation of Phospholipase Câ€. Biochemistry, 1997, 36, 6415-6423.	1.2	80
54	Heterogeneity in β-Adrenergic Receptor Kinase Expression in the Lung Accounts for Cell-specific Desensitization of the β2-Adrenergic Receptor. Journal of Biological Chemistry, 1997, 272, 7338-7344.	1.6	79

#	Article	IF	CITATIONS
55	TAS2R activation promotes airway smooth muscle relaxation despite β ₂ -adrenergic receptor tachyphylaxis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L304-L311.	1.3	76
56	G Protein-coupled Receptor Kinase Specificity for Phosphorylation and Desensitization of α2-Adrenergic Receptor Subtypes. Journal of Biological Chemistry, 1996, 271, 18082-18087.	1.6	75
57	Update on current concepts of the molecular basis of β2-adrenergic receptor signaling. Journal of Allergy and Clinical Immunology, 2002, 110, S223-S228.	1.5	75
58	Bitter Taste Receptor Function in Asthmatic and Nonasthmatic Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 678-683.	1.4	71
59	Molecular Mechanisms of Â2-Adrenergic Receptor Function and Regulation. Proceedings of the American Thoracic Society, 2005, 2, 292-296.	3.5	70
60	Alternative splicing of the G protein-coupled receptor superfamily in human airway smooth muscle diversifies the complement of receptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5230-5235.	3.3	70
61	Common Genomic Response in Different Mouse Models of β-Adrenergic–Induced Cardiomyopathy. Circulation, 2003, 108, 2926-2933.	1.6	68
62	An Asn to Lys Polymorphism in the Third Intracellular Loop of the Human α2A-Adrenergic Receptor Imparts Enhanced Agonist-promoted Gi Coupling. Journal of Biological Chemistry, 2000, 275, 38518-38523.	1.6	67
63	Taste and smell GPCRs in the lung: Evidence for a previously unrecognized widespread chemosensory system. Cellular Signalling, 2018, 41, 82-88.	1.7	67
64	Hierarchy of Polymorphic Variation and Desensitization Permutations Relative to β1- and β2-Adrenergic Receptor Signaling. Journal of Biological Chemistry, 2003, 278, 10784-10789.	1.6	65
65	G protein receptor kinase 4 polymorphisms. Hypertension, 2012, 60, 957-964.	1.3	65
66	α2A- and α2C-Adrenergic Receptors Form Homo- and Heterodimers:  The Heterodimeric State Impairs Agonist-Promoted GRK Phosphorylation and β-Arrestin Recruitment. Biochemistry, 2006, 45, 4760-4767.	1.2	64
67	Altering the Receptorâ^'Effector Ratio by Transgenic Overexpression of Type V Adenylyl Cyclase:Â Enhanced Basal Catalytic Activity and Function without Increased Cardiomyocyte β-Adrenergic Signallingâ€. Biochemistry, 1999, 38, 16706-16713.	1.2	61
68	Identification and functional characterization of α2-adrenoceptor polymorphisms. Trends in Pharmacological Sciences, 2001, 22, 471-477.	4.0	59
69	Crosstalk between Gi and Gq/Gs pathways in airway smooth muscle regulates bronchial contractility and relaxation. Journal of Clinical Investigation, 2007, 117, 1391-1398.	3.9	58
70	Transgenic Overexpression of β2-Adrenergic Receptors in Airway Smooth Muscle Alters Myocyte Function and Ablates Bronchial Hyperreactivity. Journal of Biological Chemistry, 1999, 274, 32241-32247.	1.6	57
71	Molecular and genetic basis of β2 -adrenergic receptor functionâ~†â~†â~†. Journal of Allergy and Clinical Immunology, 1999, 104, S42-S46.	1.5	57
72	Regulatory Haplotypes inARG1Are Associated with Altered Bronchodilator Response. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 449-454.	2.5	56

#	Article	IF	CITATIONS
73	An lle to Met polymorphism in the catalytic domain of adenylyl cyclase type 9 confers reduced ??2-adrenergic receptor stimulation. Pharmacogenetics and Genomics, 2003, 13, 535-541.	5.7	55
74	Combinatorial Pharmacogenetic Interactions of Bucindolol and β1, α2C Adrenergic Receptor Polymorphisms. PLoS ONE, 2012, 7, e44324.	1.1	55
75	Coupling of Airway Smooth Muscle Bitter Taste Receptors to Intracellular Signaling and Relaxation Is via G _{αi1,2,3} . American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 762-771.	1.4	54
76	Transgenic replacement of type V adenylyl cyclase identifies a critical mechanism of β-adrenergic receptor dysfunction in the Cαqoverexpressing mouse. FEBS Letters, 1999, 458, 236-240.	1.3	53
77	An inflammation-independent contraction mechanophenotype of airway smooth muscle in asthma. Journal of Allergy and Clinical Immunology, 2016, 138, 294-297.e4.	1.5	52
78	Polymorphisms of cardiac presynaptic Â2C adrenergic receptors: Diverse intragenic variability with haplotype-specific functional effects. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13020-13025.	3.3	51
79	Mechanisms of Pharmacogenomic Effects of Genetic Variation within the Cardiac Adrenergic Network in Heart Failure. Molecular Pharmacology, 2009, 76, 466-480.	1.0	51
80	Agonist-Promoted Homologous Desensitization of Human Airway Smooth Muscle Bitter Taste Receptors. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1069-1074.	1.4	49
81	An Acidic Motif within the Third Intracellular Loop of the .alpha.2C2 Adrenergic Receptor Is Required for Agonist-Promoted Phosphorylation and Desensitization. Biochemistry, 1995, 34, 11946-11953.	1.2	48
82	Polymorphisms of the β2-Adrenergic Receptor. New England Journal of Medicine, 2002, 346, 536-538.	13.9	47
83	Rescue of tropomyosin-induced familial hypertrophic cardiomyopathy mice by transgenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H949-H958.	1.5	47
84	A polymorphism of G-protein coupled receptor kinase5 alters agonist-promoted desensitization of β2-adrenergic receptors. Pharmacogenetics and Genomics, 2008, 18, 729-732.	0.7	46
85	Complex haplotypes derived from noncoding polymorphisms of the intronless Â2A-adrenergic gene diversify receptor expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5472-5477.	3.3	43
86	Prevention of Atrial Fibrillation by Bucindolol Is Dependent on the Beta 1 389 Arg/Gly Adrenergic Receptor Polymorphism. JACC: Heart Failure, 2013, 1, 338-344.	1.9	43
87	A Primate-dominant Third Glycosylation Site of the β2-Adrenergic Receptor Routes Receptors to Degradation during Agonist Regulation. Journal of Biological Chemistry, 2004, 279, 38603-38607.	1.6	42
88	Phosphorylation and Functional Desensitization of the α _{2A} -Adrenergic Receptor by Protein Kinase C. Molecular Pharmacology, 1998, 54, 44-49.	1.0	41
89	Targeted transgenic expression of β ₂ -adrenergic receptors to type II cells increases alveolar fluid clearance. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L895-L903.	1.3	41
90	MicroRNA <i>let-7</i> establishes expression of β ₂ -adrenergic receptors and dynamically down-regulates agonist-promoted down-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6246-6251.	3.3	41

#	Article	IF	CITATIONS
91	Common ADRB2 Haplotypes Derived from 26 Polymorphic Sites Direct \hat{I}^22 -Adrenergic Receptor Expression and Regulation Phenotypes. PLoS ONE, 2010, 5, e11819.	1.1	40
92	Bronchodilator activity of bitter tastants in human tissue. Nature Medicine, 2011, 17, 776-778.	15.2	40
93	Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells. PLoS ONE, 2015, 10, e0131582.	1.1	40
94	Activated cofilin exacerbates tau pathology by impairing tau-mediated microtubule dynamics. Communications Biology, 2019, 2, 112.	2.0	39
95	β-Adrenergic receptors in the failing heart: the good, the bad, and the unknown. Journal of Clinical Investigation, 2001, 107, 947-948.	3.9	39
96	Identification of adrenergic receptor polymorphisms. Methods in Enzymology, 2002, 343, 459-475.	0.4	38
97	Bitter taste receptors on airway smooth muscle as targets for novel bronchodilators. Expert Opinion on Therapeutic Targets, 2013, 17, 721-731.	1.5	38
98	Future Translational Applications From the Contemporary Genomics Era. Circulation, 2015, 131, 1715-1736.	1.6	38
99	A Genome-Wide Association Study of Idiopathic Dilated Cardiomyopathy in African Americans. Journal of Personalized Medicine, 2018, 8, 11.	1.1	38
100	The Presence of Lys27 Instead of Asn27 in Human Phospholamban Promotes Sarcoplasmic Reticulum Ca 2+ -ATPase Superinhibition and Cardiac Remodeling. Circulation, 2006, 113, 995-1004.	1.6	37
101	Hypertrophyâ€Associated Polymorphisms Ascertained in a Founder Cohort Applied to Heart Failure Risk and Mortality. Clinical and Translational Science, 2011, 4, 17-23.	1.5	35
102	Modification of the β2-Adrenergic Receptor to Engineer a Receptor-Effector Complex for Gene Therapy. Journal of Biological Chemistry, 2001, 276, 31596-31601.	1.6	34
103	Myocardial β1-adrenergic receptor polymorphisms affect functional recovery after ischemic injury. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1427-H1432.	1.5	34
104	Inhibition of PI3K promotes dilation of human small airways in a rho kinaseâ€dependent manner. British Journal of Pharmacology, 2016, 173, 2726-2738.	2.7	34
105	β-Arrestin2 oligomers impair the clearance of pathological tau and increase tau aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5006-5015.	3.3	34
106	Race, Common Genetic Variation, and Therapeutic Response Disparities in Heart Failure. JACC: Heart Failure, 2014, 2, 561-572.	1.9	33
107	Targeted transgenesis reveals discrete attenuator functions of GRK and PKA in airway β ₂ -adrenergic receptor physiologic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15007-15012.	3.3	32
108	Genetic Variation, Î ² -blockers, and Perioperative Myocardial Infarction. Anesthesiology, 2011, 115, 1316-1327.	1.3	32

#	Article	IF	CITATIONS
109	Transgenic overexpression of β ₂ -adrenergic receptors in airway epithelial cells decreases bronchoconstriction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L379-L389.	1.3	31
110	Adrenergic Receptor Polymorphisms and Prevention of Ventricular Arrhythmias With Bucindolol in Patients With Chronic Heart Failure. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 137-143.	2.1	31
111	Yohimbine Dimers Exhibiting Selectivity for the Human α2c-Adrenoceptor Subtype. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 979-984.	1.3	30
112	Genetically modified mouse models for pharmacogenomic research. Nature Reviews Genetics, 2004, 5, 657-663.	7.7	30
113	Agonist-Mediated Downregulation of Gαivia the α2-Adrenergic Receptor Is Targeted by Receptor-Cilnteraction and Is Independent of Receptor Signaling and Regulationâ€. Biochemistry, 1998, 37, 15720-15725.	1.2	29
114	Reply to: Activation of BK channels may not be required for bitter tastant–induced bronchodilation. Nature Medicine, 2012, 18, 650-651.	15.2	29
115	Striated muscle tropomyosin isoforms differentially regulate cardiac performance and myofilament calcium sensitivity. Journal of Muscle Research and Cell Motility, 2010, 31, 227-239.	0.9	25
116	A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nature Biomedical Engineering, 2019, 3, 532-544.	11.6	25
117	α2A/α2C-Adrenergic Receptor Third Loop Chimera Show That Agonist Interaction with Receptor Subtype Backbone Establishes G Protein-coupled Receptor Kinase Phosphorylation. Journal of Biological Chemistry, 2000, 275, 28989-28993.	1.6	24
118	Gene and Protein Domain-Specific Patterns of Genetic Variability Within the G-Protein Coupled Receptor Superfamily. Molecular Diagnosis and Therapy, 2003, 3, 65-71.	3.3	24
119	β2-Adrenergic Receptors Chaperone Trapped Bitter Taste Receptor 14 to the Cell Surface as a Heterodimer and Exert Unidirectional Desensitization of Taste Receptor Function. Journal of Biological Chemistry, 2016, 291, 17616-17628.	1.6	24
120	Biased TAS2R Bronchodilators Inhibit Airway Smooth Muscle Growth by Downregulating Phosphorylated Extracellular Signal–regulated Kinase 1/2. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 532-540.	1.4	24
121	Desensitization of the β-adrenergic recepton: Distinct molecular determinants of phosphorylation by specific kinases. Pharmacological Research, 1991, 24, 29-41.	3.1	23
122	α _{2A} -Adrenergic Receptors in the Genetics, Pathogenesis, and Treatment of Type 2 Diabetes. Science Translational Medicine, 2009, 1, 12ps15.	5.8	23
123	Pharmacogenomics of β1-Adrenergic Receptor Polymorphisms in Heart Failure. Heart Failure Clinics, 2010, 6, 27-33.	1.0	23
124	Role of the Amino Terminus of the Third Intracellular Loop in Agonist-Promoted Downregulation of the α2A-Adrenergic Receptorâ€. Biochemistry, 1997, 36, 8858-8863.	1.2	22
125	Role of βARK in Long-Term Agonist-Promoted Desensitisation of the β2-Adrenergic Receptor. Cellular Signalling, 1998, 10, 197-204.	1.7	22
126	Functional Receptor Coupling to Gils A Mechanism of Agonist-Promoted Desensitization of the β2-Adrenergic Receptor. Journal of Receptor and Signal Transduction Research, 2000, 20, 75-85.	1.3	22

#	Article	IF	CITATIONS
127	Polymorphisms of Adrenergic Receptors: Variations on a Theme. Assay and Drug Development Technologies, 2003, 1, 317-326.	0.6	22
128	A functional polymorphism of the GÂq (GNAQ) gene is associated with accelerated mortality in African-American heart failure. Human Molecular Genetics, 2007, 16, 2740-2750.	1.4	21
129	Fusion of β2-Adrenergic Receptor to Cαs in Mammalian Cells:  Identification of a Specific Signal Transduction Species Not Characteristic of Constitutive Activation or Precoupling. Biochemistry, 2000, 39, 2815-2821.	1.2	20
130	Activity of the uptake-1 norepinephrine transporter as measured by I-123 MIBG in heart failure patients with a loss-of-function polymorphism of the presynaptic α2C–adrenergic receptor. Journal of Nuclear Cardiology, 2003, 10, 583-589.	1.4	20
131	Transcriptional response to persistent β2-adrenergic receptor signaling reveals regulation of phospholamban, which alters airway contractility. Physiological Genomics, 2006, 27, 171-177.	1.0	20
132	Variable-length poly-C tract polymorphisms of the β2-adrenergic receptor 3′-UTR alter expression and agonist regulation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L190-L195.	1.3	20
133	system of the human macrophage U937 cell line. European Journal of Pharmacology, 1989, 163, 171-174.	1.7	19
134	False positive non-synonymous polymorphisms of G-protein coupled receptor genes. FEBS Letters, 2002, 516, 253-256.	1.3	19
135	The two-timing thyroid. Nature Medicine, 2004, 10, 582-583.	15.2	19
136	β 2 -Adrenergic Receptor Polymorphisms and Sudden Cardiac Death. Circulation, 2006, 113, 1818-1820.	1.6	19
137	Pharmacogenomics of βâ€Adrenergic Receptors and Their Accessory Signaling Proteins in Heart Failure. Clinical and Translational Science, 2008, 1, 255-262.	1.5	17
138	Genetic Variation Within the β1-Adrenergic Receptor Gene Results in Haplotype-Specific Expression Phenotypes. Journal of Cardiovascular Pharmacology, 2008, 51, 106-110.	0.8	17
139	Temporal analysis of mRNA and miRNA expression in transgenic mice overexpressing Arg- and Gly389 polymorphic variants of the l² ₁ -adrenergic receptor. Physiological Genomics, 2011, 43, 1294-1306.	1.0	17
140	Medetomidine analogs as selective agonists for the human $\hat{l}\pm 2$ -adrenoceptors. Biochemical Pharmacology, 2004, 67, 87-96.	2.0	16
141	Pleiotropic β-Agonist–Promoted Receptor Conformations and Signals Independent of Intrinsic Activity. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 236-243.	1.4	16
142	Multiple interactions between the alpha2C- and beta1-adrenergic receptors influence heart failure survival. BMC Medical Genetics, 2008, 9, 93.	2.1	16
143	Full-genome sequence and analysis of a novel human rhinovirus strain within a divergent HRV-A clade. Archives of Virology, 2010, 155, 83-87.	0.9	16
144	Bitter taste receptors in the wrong place: novel airway smooth muscle targets for treating asthma. Transactions of the American Clinical and Climatological Association, 2014, 125, 64-74; discussion 74-5.	0.9	16

#	Article	IF	CITATIONS
145	Rhinovirus C15 Induces Airway Hyperresponsiveness via Calcium Mobilization in Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 310-318.	1.4	14
146	Allele-Specific Binding of Airway Nuclear Extracts to Polymorphic β2-Adrenergic Receptor 5′ Sequence. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 654-660.	1.4	13
147	Pepducins as a potential treatment strategy for asthma and COPD. Current Opinion in Pharmacology, 2018, 40, 120-125.	1.7	13
148	A CREBâ€mediated increase in miRNA <i>letâ€7f</i> during prolonged βâ€agonist exposure: a novel mechanism of β ₂ â€adrenergic receptor downâ€regulation in airway smooth muscle. FASEB Journal, 2018, 32, 3680-3688.	0.2	13
149	Phosphorylation of Ser360 in the third intracellular loop of the α2A-adrenoceptor during protein kinase C-mediated desensitization. European Journal of Pharmacology, 2002, 437, 41-46.	1.7	12
150	Identification and characterization of an atypical Gαs-biased β ₂ AR agonist that fails to evoke airway smooth muscle cell tachyphylaxis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
151	Heterogeneity of transcription factor expression and regulation in human airway epithelial and smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L453-L462.	1.3	11
152	Differential coupling of Arg- and Gly389 polymorphic forms of the β1-adrenergic receptor leads to pathogenic cardiac gene regulatory programs. Physiological Genomics, 2008, 35, 123-131.	1.0	11
153	An internal domain of β-tropomyosin increases myofilament Ca ²⁺ sensitivity. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H181-H190.	1.5	11
154	The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28485-28495.	3.3	11
155	Paradoxical attenuation of β ₂ -AR function in airway smooth muscle by G _i -mediated counterregulation in transgenic mice overexpressing type 5 adenylyl cyclase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L472-L478.	1.3	10
156	Differential longâ€ŧerm regulation of TAS2R14 by structurally distinct agonists. FASEB Journal, 2019, 33, 12213-12225.	0.2	10
157	Cardiac 7-transmembrane-spanning domain receptor portfolios: diversify, diversify, diversify. Journal of Clinical Investigation, 2006, 116, 875-877.	3.9	9
158	β-arrestin1 promotes tauopathy by transducing GPCR signaling, disrupting microtubules and autophagy. Life Science Alliance, 2022, 5, e202101183.	1.3	9
159	Dose Response of Î ² -Blockers in Adrenergic Receptor Polymorphism Genotypes. Circulation Genomic and Precision Medicine, 2018, 11, e002210.	1.6	8
160	Serine 232 of the α2A-Adrenergic Receptor Is a Protein Kinase C-Sensitive Effector Coupling Switchâ€. Biochemistry, 2001, 40, 15031-15037.	1.2	7
161	Bitransgenesis with β ₂ â€Adrenergic Receptors or Adenylyl Cyclase Fails to Improve β ₁ â€Adrenergic Receptor Cardiomyopathy. Clinical and Translational Science, 2008, 1, 221-227.	1.5	7
162	Targeted transgenesis identifies Gαs as the bottleneck in β2-adrenergic receptor cell signaling and physiological function in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L775-L780.	1.3	6

#	Article	IF	CITATIONS
163	Development of a Rhinovirus Inoculum Using a Reverse Genetics Approach. Journal of Infectious Diseases, 2019, 220, 187-194.	1.9	6
164	Biased β-Agonists Favoring Gs over β-Arrestin for Individualized Treatment of Obstructive Lung Disease. Journal of Personalized Medicine, 2022, 12, 331.	1.1	6
165	Structural Determinants of α2,-Adrenergic Receptor Regulation. Advances in Pharmacology, 1997, 42, 438-442.	1.2	5
166	Long-distance affair with adrenal GRK2 hangs up heart failure. Nature Medicine, 2007, 13, 246-248.	15.2	5
167	Identification and Characterization of Novel Bronchodilator Agonists Acting at Human Airway Smooth Muscle Cell TAS2R5. ACS Pharmacology and Translational Science, 2020, 3, 1069-1075.	2.5	5
168	Structures and Agonist Binding Sites of Bitter Taste Receptor TAS2R5 Complexed with Gi Protein and Validated against Experiment. Journal of Physical Chemistry Letters, 2021, 12, 9293-9300.	2.1	5
169	α _{1B/D} -adrenoceptors regulate chemokine receptor–mediated leukocyte migration via formation of heteromeric receptor complexes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123511119.	3.3	5
170	Plastic Adenylyl Cyclase. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 564-566.	1.4	4
171	Genome Sequences of Rhinovirus C Isolates from Wisconsin Pediatric Respiratory Studies. Genome Announcements, 2014, 2, .	0.8	4
172	Polymorphisms in human heat shock factor-1 and analysis of potential biological consequences. Cell Stress and Chaperones, 2015, 20, 47-59.	1.2	4
173	[beta]-Adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. American Heart Journal, 2000, 139, 0537-0542.	1.2	4
174	Genome Sequences of Rhinovirus A Isolates from Wisconsin Pediatric Respiratory Studies. Genome Announcements, 2014, 2, .	0.8	3
175	Genetic Vulnerability of GPCRs: A Call to Action. Trends in Biochemical Sciences, 2018, 43, 227-229.	3.7	3
176	Hereditary dysautonomias: current knowledge and collaborations for the future. Clinical Autonomic Research, 2003, 13, 180-195.	1.4	2
177	Lymphocyte GRK levels as biomarkers in heart failureThe opinions expressed in this article are not necessarily those of the Editors of the European Heart Journal or of the European Society of Cardiology European Heart Journal, 2005, 26, 1695-1696.	1.0	2
178	The short third intracellular loop and cytoplasmic tail of bitter taste receptors provide functionally relevant GRK phosphorylation sites in TAS2R14. Journal of Biological Chemistry, 2021, 296, 100216.	1.6	2
179	Selective Signal Capture from Multidimensional GPCR Outputs with Biased Agonists: Progress Towards Novel Drug Development. Molecular Diagnosis and Therapy, 2022, 26, 383-396.	1.6	2
180	Genome Sequences of Rhinovirus B Isolates from Wisconsin Pediatric Respiratory Studies. Genome Announcements, 2014, 2, .	0.8	1

#	Article	IF	CITATIONS
181	Tight control of adrenal medulla catecholamine release by α2C-adrenergic receptors influences susceptibility to heart failure. Cardiovascular Research, 2007, 75, 631-633.	1.8	Ο
182	Adrenergic Receptor Polymorphisms in Heart Failure. , 2012, , 661-672.		0
183	Preface to Special Issue on â€~Cytochrome P450 Variation in Pharmacogenomics'. Journal of Personalized Medicine, 2018, 8, 23.	1.1	0
184	β-Adrenergic Receptors. , 2004, , 57-59.		0
185	Polymorphisms of heat shock factorâ€1: Genetic diversity in an evolutionarily conserved, multifunctional regulator gene. FASEB Journal, 2011, 25, lb35.	0.2	0
186	Regulation of Intracellular Calcium by Bitter Taste Receptors on Airway Smooth Muscle. , 2014, , 409-421.		0