
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455887/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Identification of Resistance Genes Using Diagnostic R-Gene (). Methods in Molecular Biology, 2021, 2354, 213-219.	0.4	0
2	Resisting Potato Cyst Nematodes With Resistance. Frontiers in Plant Science, 2021, 12, 661194.	1.7	28
3	Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. New Phytologist, 2021, 232, 1368-1381.	3.5	6
4	Combination Breeding and Marker-Assisted Selection to Develop Late Blight Resistant Potato Cultivars. Agronomy, 2021, 11, 2192.	1.3	3
5	Identification of <i>Avramr1</i> from <i>Phytophthora infestans</i> using long read and cDNA pathogenâ€enrichment sequencing (PenSeq). Molecular Plant Pathology, 2020, 21, 1502-1512.	2.0	22
6	Operational considerations for hot-washing in potato crisp manufacture. Food and Bioproducts Processing, 2020, 124, 387-396.	1.8	9
7	The Genomic Impact of Selection for Virulence against Resistance in the Potato Cyst Nematode, Globodera pallida. Genes, 2020, 11, 1429.	1.0	8
8	New Findings on the Resistance Mechanism of an Elite Diploid Wild Potato Species JAM1-4 in Response to a Super Race Strain of Phytophthora infestans. Phytopathology, 2020, 110, 1375-1387.	1.1	11
9	Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward Phytophthora infestans. G3: Genes, Genomes, Genetics, 2020, 10, 623-634.	0.8	31
10	Natural resistance to Potato virus Y in Solanum tuberosum Group Phureja. Theoretical and Applied Genetics, 2020, 133, 967-980.	1.8	42
11	RLP/K enrichment sequencing; a novel method to identify receptorâ€like protein (<i>RLP</i>) and receptorâ€like kinase (<i>RLK</i>) genes. New Phytologist, 2020, 227, 1264-1276.	3.5	32
12	Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnology Journal, 2019, 17, 540-549.	4.1	50
13	Mapping the H2 resistance effective against Globodera pallida pathotype Pa1 in tetraploid potato. Theoretical and Applied Genetics, 2019, 132, 1283-1294.	1.8	36
14	Chitin-Binding Protein of <i>Verticillium nonalfalfae</i> Disguises Fungus from Plant Chitinases and Suppresses Chitin-Triggered Host Immunity. Molecular Plant-Microbe Interactions, 2019, 32, 1378-1390.	1.4	72
15	Albugo candida race diversity, ploidy and hostâ€associated microbes revealed using DNA sequence capture on diseased plants in the field. New Phytologist, 2019, 221, 1529-1543.	3.5	41
16	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	2.4	66
17	Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytologist, 2019, 221, 1634-1648.	3.5	43
18	Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. Journal of Experimental Botany, 2018, 69, 1545-1555.	2.4	56

#	Article	IF	CITATIONS
19	Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theoretical and Applied Genetics, 2018, 131, 1287-1297.	1.8	65
20	BLASTmap: A Shiny-Based Application to Visualize BLAST Results as Interactive Heat Maps and a Tool to Design Gene-Specific Baits for Bespoke Target Enrichment Sequencing. Methods in Molecular Biology, 2018, 1848, 199-206.	0.4	1
21	Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7834-E7843.	3.3	55
22	Targeted capture and sequencing of gene-sized DNA molecules. BioTechniques, 2016, 61, 315-322.	0.8	48
23	Utilizing "Omic―Technologies to Identify and Prioritize Novel Sources of Resistance to the Oomycete Pathogen Phytophthora infestans in Potato Germplasm Collections. Frontiers in Plant Science, 2016, 7, 672.	1.7	69
24	A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Nature Communications, 2016, 7, 10311.	5.8	123
25	A transcriptional reference map of defence hormone responses in potato. Scientific Reports, 2015, 5, 15229.	1.6	28
26	A disease resistance locus on potato and tomato chromosome 4 exhibits a conserved multipartite structure displaying different rates of evolution in different lineages. BMC Plant Biology, 2015, 15, 255.	1.6	8
27	The Hypersensitive Response in PAMP- and Effector-Triggered Immune Responses. , 2015, , 235-268.		4
28	Detection of the Virulent Form of AVR3a from Phytophthora infestans following Artificial Evolution of Potato Resistance Gene R3a. PLoS ONE, 2014, 9, e110158.	1.1	45
29	Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 2014, 5, 655.	1.7	138
30	Genomic DNA Library Preparation for Resistance Gene Enrichment and Sequencing (RenSeq) in Plants. Methods in Molecular Biology, 2014, 1127, 291-303.	0.4	24
31	Hypersensitive response to Potato virus Y in potato cultivar Sárpo Mira is conferred by the Ny-Smira gene located on the long arm of chromosome IX. Molecular Breeding, 2014, 34, 471-480.	1.0	24
32	Resistance gene enrichment sequencing (<scp>R</scp> en <scp>S</scp> eq) enables reannotation of the <scp>NB</scp> â€ <scp>LRR</scp> gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant Journal, 2013, 76, 530-544.	2.8	367
33	Relocalization of Late Blight Resistance Protein R3a to Endosomal Compartments Is Associated with Effector Recognition and Required for the Immune Response. Plant Cell, 2013, 24, 5142-5158.	3.1	77
34	Host Protein BSL1 Associates with <i>Phytophthora infestans</i> RXLR Effector AVR2 and the <i>Solanum demissum</i> Immune Receptor R2 to Mediate Disease Resistance. Plant Cell, 2012, 24, 3420-3434.	3.1	130
35	Genome Analyses of an Aggressive and Invasive Lineage of the Irish Potato Famine Pathogen. PLoS Pathogens, 2012, 8, e1002940.	2.1	321
36	Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics, 2012, 13, 75.	1.2	290

#	Article	IF	CITATIONS
37	Crops that feed the world 8: Potato: are the trends of increased global production sustainable?. Food Security, 2012, 4, 477-508.	2.4	295
38	CMPG1â€dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by <i>Phytophthora infestans</i> RXLR effector AVR3a. New Phytologist, 2011, 190, 653-666.	3.5	142
39	Presence/absence, differential expression and sequence polymorphisms between <i>PiAVR2</i> and <i>PiAVR2â€like</i> in <i>Phytophthora infestans</i> determine virulence on <i>R2</i> plants. New Phytologist, 2011, 191, 763-776.	3.5	142
40	ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytologist, 2011, 192, 471-482.	3.5	62
41	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	3.3	412
42	The 172-kb genomic DNA region of the O. rufipogon yld1.1 locus: comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica. Functional and Integrative Genomics, 2009, 9, 97-108.	1.4	3
43	Progress in Mapping and Cloning Qualitative and Quantitative Resistance Against Phytophthora infestans in Potato and Its Wild Relatives. Potato Research, 2009, 52, 215-227.	1.2	62
44	Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theoretical and Applied Genetics, 2009, 118, 1143-1155.	1.8	49
45	Salicylic acid confers resistance to a biotrophic rust pathogen, <i>Puccinia substriata</i> , in pearl millet (<i>Pennisetum glaucum</i>). Molecular Plant Pathology, 2009, 10, 291-304.	2.0	37
46	The zigâ€zagâ€zig in oomycete–plant interactions. Molecular Plant Pathology, 2009, 10, 547-562.	2.0	136
47	The zig-zag-zig in oomycete-plant interactions. Molecular Plant Pathology, 2009, 10, 717-717.	2.0	1
48	Functional Validation in the Triticeae. , 2009, , 359-385.		2
49	Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta, 2008, 228, 319-330.	1.6	70
50	Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Current Opinion in Plant Biology, 2008, 11, 373-379.	3.5	157
51	Genomic Resources and Tools for Gene Function Analysis in Potato. International Journal of Plant Genomics, 2008, 2008, 1-9.	2.2	10
52	Generation and Screening of a BAC Library from a Diploid Potato Clone to Unravel Durable Late Blight Resistance on Linkage Group IV. International Journal of Plant Genomics, 2007, 2007, 1-5.	2.2	14
53	A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 2007, 450, 115-118.	13.7	760
54	Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant Journal, 2007, 52, 1-13.	2.8	147

#	Article	IF	CITATIONS
55	Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots. Molecular Plant Pathology, 2007, 8, 333-341.	2.0	99
56	Screening of cDNA Libraries on Glass Slide Microarrays. Methods in Molecular Biology, 2007, 382, 177-203.	0.4	5
57	Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development. Planta, 2005, 221, 513-522.	1.6	27
58	Isolation of high molecular weight DNA suitable for BAC library construction from woody perennial soft-fruit species. BioTechniques, 2005, 38, 69-71.	0.8	18
59	Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley. Plant Physiology, 2005, 138, 2155-2164.	2.3	245
60	Phenotypical and molecular characterization of the Tomato mottle Taino virus–Nicotiana megalosiphon interaction. Physiological and Molecular Plant Pathology, 2005, 67, 231-236.	1.3	9
61	High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis. BioTechniques, 2004, 37, 818-824.	0.8	37
62	Potato Virus X-Induced Gene Silencing in Leaves and Tubers of Potato. Plant Physiology, 2004, 134, 1308-1316.	2.3	160
63	Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Molecular Plant Pathology, 2004, 5, 45-56.	2.0	50
64	Characterisation of early transcriptional changes involving multiple signalling pathways in the Mla13 barley interaction with powdery mildew (Blumeria graminis f. sp. hordei). Planta, 2004, 218, 803-813.	1.6	26
65	Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant Journal, 2003, 34, 543-553.	2.8	172
66	Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Molecular Biology, 2001, 45, 201-214.	2.0	93