Mark J Ferris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455689/publications.pdf Version: 2024-02-01

MADE | FEDDIS

#	Article	IF	CITATIONS
1	α7 nicotinic acetylcholine receptor modulation of accumbal dopamine release covaries with novelty seeking. European Journal of Neuroscience, 2022, 55, 1162-1173.	2.6	2
2	Diurnal rhythms in cholinergic modulation of rapid dopamine signals and associative learning in the striatum. Cell Reports, 2022, 39, 110633.	6.4	7
3	Selective Optogenetic Dopamine Terminal Stimulation Reveals Role of GABAergic Signaling in Individual Differences in Dopamine Release. FASEB Journal, 2022, 36, .	0.5	0
4	Diurnal Variation in Motivation, Cocaine Value, and <i>In Vivo</i> Dopamine Release. FASEB Journal, 2022, 36, .	0.5	0
5	Metabotropic glutamate 2,3 receptor stimulation desensitizes agonist activation of Gâ€protein signaling and alters transcription regulators in mesocorticolimbic brain regions. Synapse, 2021, 75, e22190.	1.2	1
6	Response to Novelty Predicts α7 Nicotinic Receptor and Voltageâ€Gated Calcium Channel Modulation of Dopamine Release. FASEB Journal, 2021, 35, .	0.5	0
7	Timeâ€ofâ€Day Variation in Learning, Rewardâ€Associated Behaviors, and Rapid Dopamine Release. FASEB Journal, 2021, 35, .	0.5	0
8	Comparing dopamine release, uptake, and D2 autoreceptor function across the ventromedial to dorsolateral striatum in adolescent and adult male and female rats. Neuropharmacology, 2020, 175, 108163.	4.1	14
9	Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. , 2020, 213, 107583.		13
10	Stimulation of muscarinic acetylcholine M1 receptors reallocates choice between cocaine and an alternative reinforcer. Neuropsychopharmacology, 2020, 45, 1965-1966.	5.4	0
11	Phasic Dopamine Release Magnitude Tracks Individual Differences in Sensitization of Locomotor Response following a History of Nicotine Exposure. Scientific Reports, 2020, 10, 173.	3.3	15
12	Timeâ€ofâ€Day Variation in Learning, Rewardâ€Associated Behaviors, and in Rapid Dopamine Signaling. FASEB Journal, 2020, 34, 1-1.	0.5	0
13	RGS2 Modulates Cocaine Selfâ€administration by Controlling Dopamine D2 Autoreceptor Activity. FASEB Journal, 2020, 34, 1-1.	0.5	0
14	Individual differences in modulation of dopamine release in a rodent model of substance abuse vulnerability. FASEB Journal, 2020, 34, 1-1.	0.5	0
15	Chronic Social Isolation Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via Augmentation in Accumbal Dopamine Availability. ACS Chemical Neuroscience, 2019, 10, 2033-2044.	3.5	34
16	RGS2 Regulates Cocaine Selfâ€Administration through Midbrain Dopamine D2 Autoreceptors. FASEB Journal, 2019, 33, 805.14.	0.5	0
17	Modulation of striatal dopamine release by nicotinic receptors in adolescent and adult rats. FASEB Journal, 2018, 32, 820.1.	0.5	0
18	mGluR2/3 Agonist LY379268 on Gâ€protein Activation and CREB Phosphorylation. FASEB Journal, 2018, 32, 820.9.	0.5	0

Mark J Ferris

#	Article	IF	CITATIONS
19	Reinforcing Doses of Intravenous Cocaine Produce Only Modest Dopamine Uptake Inhibition. ACS Chemical Neuroscience, 2017, 8, 281-289.	3.5	14
20	α6β2 subunit containing nicotinic acetylcholine receptors exert opposing actions on rapid dopamine signaling in the nucleus accumbens of rats with high-versus low-response to novelty. Neuropharmacology, 2017, 126, 281-291.	4.1	15
21	Hypocretin/orexin knockâ€out mice display disrupted behavioral and dopamine responses to cocaine. Addiction Biology, 2017, 22, 1695-1705.	2.6	31
22	The individual and combined effects of phenmetrazine and mgluR2/3 agonist LY379268 on the motivation to self-administer cocaine. Drug and Alcohol Dependence, 2016, 166, 51-60.	3.2	13
23	Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum. Neuropharmacology, 2016, 101, 471-479.	4.1	83
24	Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release. Journal of Neurochemistry, 2015, 134, 833-844.	3.9	56
25	Cocaine selfâ€administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine. European Journal of Neuroscience, 2015, 42, 2091-2096.	2.6	35
26	Differential Influence of Dopamine Transport Rate on the Potencies of Cocaine, Amphetamine, and Methylphenidate. ACS Chemical Neuroscience, 2015, 6, 155-162.	3.5	26
27	A Single Amphetamine Infusion Reverses Deficits in Dopamine Nerve-Terminal Function Caused by a History of Cocaine Self-Administration. Neuropsychopharmacology, 2015, 40, 1826-1836.	5.4	19
28	Adaptations of Presynaptic Dopamine Terminals Induced by Psychostimulant Self-Administration. ACS Chemical Neuroscience, 2015, 6, 27-36.	3.5	50
29	Greater ethanol inhibition of presynaptic dopamine release in C57BL/6J than DBA/2J mice: Role of nicotinic acetylcholine receptors. Neuroscience, 2015, 284, 854-864.	2.3	24
30	Protein kinase C beta regulates the D2-Like dopamine autoreceptor. Neuropharmacology, 2015, 89, 335-341.	4.1	17
31	Sustained <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling. European Journal of Neuroscience, 2014, 40, 2255-2263.	2.6	15
32	Intermittent Cocaine Self-Administration Produces Sensitization of Stimulant Effects at the Dopamine Transporter. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 192-198.	2.5	43
33	Frequency-Dependent Effects of Ethanol on Dopamine Release in the Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2014, 38, 438-447.	2.4	28
34	Extended access of cocaine selfâ€administration results in tolerance to the dopamineâ€elevating and locomotorâ€stimulating effects of cocaine. Journal of Neurochemistry, 2014, 128, 224-232.	3.9	66
35	Selective Deletion of GRK2 Alters Psychostimulant-Induced Behaviors and Dopamine Neurotransmission. Neuropsychopharmacology, 2014, 39, 2450-2462.	5.4	19
36	Biphasic Mechanisms of Amphetamine Action at the Dopamine Terminal. Journal of Neuroscience, 2014, 34, 5575-5582.	3.6	49

Mark J Ferris

#	Article	IF	CITATIONS
37	Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2751-9.	7.1	152
38	Methylphenidate and cocaine selfâ€administration produce distinct dopamine terminal alterations. Addiction Biology, 2014, 19, 145-155.	2.6	60
39	Individual Differences in Nicotinic Acetylcholine Receptor Modulation of Dopamine Signals in the Nucleus Accumbens Shell. , 2014, , 252.		0
40	Examining the Complex Regulation and Drug-Induced Plasticity of Dopamine Release and Uptake Using Voltammetry in Brain Slices. ACS Chemical Neuroscience, 2013, 4, 693-703.	3.5	62
41	Temporal Pattern of Cocaine Intake Determines Tolerance vs Sensitization of Cocaine Effects at the Dopamine Transporter. Neuropsychopharmacology, 2013, 38, 2385-2392.	5.4	158
42	Amphetamine Mechanisms and Actions at the Dopamine Terminal Revisited. Journal of Neuroscience, 2013, 33, 8923-8925.	3.6	84
43	Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression. Nature Communications, 2013, 4, 2720.	12.8	66
44	Paradoxical tolerance to cocaine after initial supersensitivity in drugâ€useâ€prone animals. European Journal of Neuroscience, 2013, 38, 2628-2636.	2.6	24
45	Cocaine Self-Administration Produces Pharmacodynamic Tolerance: Differential Effects on the Potency of Dopamine Transporter Blockers, Releasers, and Methylphenidate. Neuropsychopharmacology, 2012, 37, 1708-1716.	5.4	68
46	Effects of the histamine H1 receptor antagonist and benztropine analog diphenylpyraline on dopamine uptake, locomotion and reward. European Journal of Pharmacology, 2012, 683, 161-165.	3.5	12
47	Cocaine-Insensitive Dopamine Transporters with Intact Substrate Transport Produced by Self-Administration. Biological Psychiatry, 2011, 69, 201-207.	1.3	60
48	Hyperdopaminergic tone in HIVâ€1 protein treated rats and cocaine sensitization. Journal of Neurochemistry, 2010, 115, 885-896.	3.9	41
49	In vivo microdialysis in awake, freely moving rats demonstrates HIVâ€l Tatâ€induced alterations in dopamine transmission. Synapse, 2009, 63, 181-185.	1.2	39
50	The human immunodeficiency virus-1–associated protein, Tat1-86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: A no-net-flux microdialysis study. Neuroscience, 2009, 159, 1292-1299.	2.3	45
51	Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: Current status of dopamine system vulnerability in NeuroAIDS. Neuroscience and Biobehavioral Reviews, 2008, 32, 883-909.	6.1	127
52	Sex mediates dopamine and adrenergic receptor expression in adult rats exposed prenatally to cocaine. International Journal of Developmental Neuroscience, 2007, 25, 445-454.	1.6	14
53	Diurnal Rhythms in Cholinergic Modulation of Rapid Dopamine Signals in the Striatum. SSRN Electronic Journal, 0, , .	0.4	0