Mark J Ferris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455689/publications.pdf

Version: 2024-02-01

	279798	315739
1,703	23	38
citations	h-index	g-index
5.0	F.C.	1044
56	56	1944
docs citations	times ranked	citing authors
	1,703 citations 56 docs citations	1,703 23 citations h-index 56 56

#	Article	IF	CITATIONS
1	Temporal Pattern of Cocaine Intake Determines Tolerance vs Sensitization of Cocaine Effects at the Dopamine Transporter. Neuropsychopharmacology, 2013, 38, 2385-2392.	5.4	158
2	Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2751-9.	7.1	152
3	Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: Current status of dopamine system vulnerability in NeuroAIDS. Neuroscience and Biobehavioral Reviews, 2008, 32, 883-909.	6.1	127
4	Amphetamine Mechanisms and Actions at the Dopamine Terminal Revisited. Journal of Neuroscience, 2013, 33, 8923-8925.	3.6	84
5	Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum. Neuropharmacology, 2016, 101, 471-479.	4.1	83
6	Cocaine Self-Administration Produces Pharmacodynamic Tolerance: Differential Effects on the Potency of Dopamine Transporter Blockers, Releasers, and Methylphenidate. Neuropsychopharmacology, 2012, 37, 1708-1716.	5.4	68
7	Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression. Nature Communications, 2013, 4, 2720.	12.8	66
8	Extended access of cocaine selfâ€administration results in tolerance to the dopamineâ€elevating and locomotorâ€stimulating effects of cocaine. Journal of Neurochemistry, 2014, 128, 224-232.	3.9	66
9	Examining the Complex Regulation and Drug-Induced Plasticity of Dopamine Release and Uptake Using Voltammetry in Brain Slices. ACS Chemical Neuroscience, 2013, 4, 693-703.	3.5	62
10	Cocaine-Insensitive Dopamine Transporters with Intact Substrate Transport Produced by Self-Administration. Biological Psychiatry, 2011, 69, 201-207.	1.3	60
11	Methylphenidate and cocaine selfâ€administration produce distinct dopamine terminal alterations. Addiction Biology, 2014, 19, 145-155.	2.6	60
12	Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release. Journal of Neurochemistry, 2015, 134, 833-844.	3.9	56
13	Adaptations of Presynaptic Dopamine Terminals Induced by Psychostimulant Self-Administration. ACS Chemical Neuroscience, 2015, 6, 27-36.	3.5	50
14	Biphasic Mechanisms of Amphetamine Action at the Dopamine Terminal. Journal of Neuroscience, 2014, 34, 5575-5582.	3.6	49
15	The human immunodeficiency virus-1–associated protein, Tat1-86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: A no-net-flux microdialysis study. Neuroscience, 2009, 159, 1292-1299.	2.3	45
16	Intermittent Cocaine Self-Administration Produces Sensitization of Stimulant Effects at the Dopamine Transporter. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 192-198.	2.5	43
17	Hyperdopaminergic tone in HIVâ€1 protein treated rats and cocaine sensitization. Journal of Neurochemistry, 2010, 115, 885-896.	3.9	41
18	In vivo microdialysis in awake, freely moving rats demonstrates HIVâ€1 Tatâ€induced alterations in dopamine transmission. Synapse, 2009, 63, 181-185.	1.2	39

#	Article	IF	CITATIONS
19	Cocaine selfâ€administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine. European Journal of Neuroscience, 2015, 42, 2091-2096.	2.6	35
20	Chronic Social Isolation Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via Augmentation in Accumbal Dopamine Availability. ACS Chemical Neuroscience, 2019, 10, 2033-2044.	3.5	34
21	Hypocretin/orexin knockâ€out mice display disrupted behavioral and dopamine responses to cocaine. Addiction Biology, 2017, 22, 1695-1705.	2.6	31
22	Frequency-Dependent Effects of Ethanol on Dopamine Release in the Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2014, 38, 438-447.	2.4	28
23	Differential Influence of Dopamine Transport Rate on the Potencies of Cocaine, Amphetamine, and Methylphenidate. ACS Chemical Neuroscience, 2015, 6, 155-162.	3.5	26
24	Paradoxical tolerance to cocaine after initial supersensitivity in drugâ€useâ€prone animals. European Journal of Neuroscience, 2013, 38, 2628-2636.	2.6	24
25	Greater ethanol inhibition of presynaptic dopamine release in C57BL/6J than DBA/2J mice: Role of nicotinic acetylcholine receptors. Neuroscience, 2015, 284, 854-864.	2.3	24
26	Selective Deletion of GRK2 Alters Psychostimulant-Induced Behaviors and Dopamine Neurotransmission. Neuropsychopharmacology, 2014, 39, 2450-2462.	5.4	19
27	A Single Amphetamine Infusion Reverses Deficits in Dopamine Nerve-Terminal Function Caused by a History of Cocaine Self-Administration. Neuropsychopharmacology, 2015, 40, 1826-1836.	5.4	19
28	Protein kinase C beta regulates the D2-Like dopamine autoreceptor. Neuropharmacology, 2015, 89, 335-341.	4.1	17
29	Sustained <i>N</i> à€methylâ€ <scp>d</scp> â€aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling. European Journal of Neuroscience, 2014, 40, 2255-2263.	2.6	15
30	$\hat{l}\pm 6\hat{l}^22$ subunit containing nicotinic acetylcholine receptors exert opposing actions on rapid dopamine signaling in the nucleus accumbens of rats with high-versus low-response to novelty. Neuropharmacology, 2017, 126, 281-291.	4.1	15
31	Phasic Dopamine Release Magnitude Tracks Individual Differences in Sensitization of Locomotor Response following a History of Nicotine Exposure. Scientific Reports, 2020, 10, 173.	3.3	15
32	Sex mediates dopamine and adrenergic receptor expression in adult rats exposed prenatally to cocaine. International Journal of Developmental Neuroscience, 2007, 25, 445-454.	1.6	14
33	Reinforcing Doses of Intravenous Cocaine Produce Only Modest Dopamine Uptake Inhibition. ACS Chemical Neuroscience, 2017, 8, 281-289.	3.5	14
34	Comparing dopamine release, uptake, and D2 autoreceptor function across the ventromedial to dorsolateral striatum in adolescent and adult male and female rats. Neuropharmacology, 2020, 175, 108163.	4.1	14
35	The individual and combined effects of phenmetrazine and mgluR2/3 agonist LY379268 on the motivation to self-administer cocaine. Drug and Alcohol Dependence, 2016, 166, 51-60.	3.2	13
36	Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder., 2020, 213, 107583.		13

#	Article	IF	CITATIONS
37	Effects of the histamine H1 receptor antagonist and benztropine analog diphenylpyraline on dopamine uptake, locomotion and reward. European Journal of Pharmacology, 2012, 683, 161-165.	3.5	12
38	Diurnal rhythms in cholinergic modulation of rapid dopamine signals and associative learning in the striatum. Cell Reports, 2022, 39, 110633.	6.4	7
39	$\hat{l}\pm7$ nicotinic acetylcholine receptor modulation of accumbal dopamine release covaries with novelty seeking. European Journal of Neuroscience, 2022, 55, 1162-1173.	2.6	2
40	Metabotropic glutamate 2,3 receptor stimulation desensitizes agonist activation of Gâ€protein signaling and alters transcription regulators in mesocorticolimbic brain regions. Synapse, 2021, 75, e22190.	1.2	1
41	Stimulation of muscarinic acetylcholine M1 receptors reallocates choice between cocaine and an alternative reinforcer. Neuropsychopharmacology, 2020, 45, 1965-1966.	5.4	0
42	Diurnal Rhythms in Cholinergic Modulation of Rapid Dopamine Signals in the Striatum. SSRN Electronic Journal, $0, \dots$	0.4	0
43	Response to Novelty Predicts α7 Nicotinic Receptor and Voltageâ€Gated Calcium Channel Modulation of Dopamine Release. FASEB Journal, 2021, 35, .	0.5	0
44	Timeâ€ofâ€Day Variation in Learning, Rewardâ€Associated Behaviors, and Rapid Dopamine Release. FASEB Journal, 2021, 35, .	0.5	0
45	Individual Differences in Nicotinic Acetylcholine Receptor Modulation of Dopamine Signals in the Nucleus Accumbens Shell., 2014,, 252.		0
46	Modulation of striatal dopamine release by nicotinic receptors in adolescent and adult rats. FASEB Journal, 2018, 32, 820.1.	0.5	0
47	mGluR2/3 Agonist LY379268 on Gâ€protein Activation and CREB Phosphorylation. FASEB Journal, 2018, 32, 820.9.	0.5	0
48	RGS2 Regulates Cocaine Selfâ€Administration through Midbrain Dopamine D2 Autoreceptors. FASEB Journal, 2019, 33, 805.14.	0.5	0
49	Timeâ€ofâ€Day Variation in Learning, Rewardâ€Associated Behaviors, and in Rapid Dopamine Signaling. FASEB Journal, 2020, 34, 1-1.	0.5	0
50	RGS2 Modulates Cocaine Selfâ€administration by Controlling Dopamine D2 Autoreceptor Activity. FASEB Journal, 2020, 34, 1-1.	0.5	0
51	Individual differences in modulation of dopamine release in a rodent model of substance abuse vulnerability. FASEB Journal, 2020, 34, 1-1.	0.5	0
52	Selective Optogenetic Dopamine Terminal Stimulation Reveals Role of GABAergic Signaling in Individual Differences in Dopamine Release. FASEB Journal, 2022, 36, .	0.5	0
53	Diurnal Variation in Motivation, Cocaine Value, and <i>In Vivo</i> Dopamine Release. FASEB Journal, 2022, 36, .	0.5	0