Chi Ho Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455287/publications.pdf

Version: 2024-02-01

279701 265120 2,128 42 42 23 h-index citations g-index papers 43 43 43 2729 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. ACS Nano, 2017, 11, 347-357.	7.3	369
2	Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy and Environmental Science, 2019, 12, 727-738.	15.6	300
3	Hierarchically Designed 3D Holey C ₂ N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries. ACS Nano, 2018, 12, 596-608.	7.3	159
4	Ampere-hour-scale zinc–air pouch cells. Nature Energy, 2021, 6, 592-604.	19.8	149
5	Densely colonized isolated Cu-N single sites for efficient bifunctional electrocatalysts and rechargeable advanced Zn-air batteries. Applied Catalysis B: Environmental, 2020, 268, 118746.	10.8	110
6	Bifunctional Covalent Organic Frameworkâ€Derived Electrocatalysts with Modulated <i>p</i> â€Band Centers for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2101727.	7.8	76
7	A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting. Small, 2020, 16, e1905884.	5.2	63
8	Metal-Free Oxygen Evolution and Oxygen Reduction Reaction Bifunctional Electrocatalyst in Alkaline Media: From Mechanisms to Structure–Catalytic Activity Relationship. ACS Sustainable Chemistry and Engineering, 2018, 6, 4973-4980.	3.2	62
9	B ₃ S monolayer: prediction of a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12706-12712.	5.2	59
10	Two-dimensional haeckelite h567: A promising high capacity and fast Li diffusion anode material for lithium-ion batteries. Carbon, 2019, 148, 344-353.	5 . 4	59
11	Designing and Tuning the Electronic Structure of Nickel–Vanadium Layered Double Hydroxides for Highly Efficient Oxygen Evolution Electrocatalysis. ACS Catalysis, 2022, 12, 3821-3831.	5 . 5	58
12	Solidâ€State Rechargeable Zinc–Air Battery with Long Shelf Life Based on Nanoengineered Polymer Electrolyte. ChemSusChem, 2018, 11, 3215-3224.	3.6	55
13	Rational design of a PC3 monolayer: A high-capacity, rapidly charging anode material for sodium-ion batteries. Carbon, 2020, 157, 420-426.	5 . 4	49
14	Role of Transition Metals in Layered Double Hydroxides for Differentiating the Oxygen Evolution and Nonenzymatic Glucose Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6193-6204.	4.0	48
15	2D transition metal dichalcogenides with glucan multivalency for antibody-free pathogen recognition. Nature Communications, 2018, 9, 2549.	5 . 8	44
16	Phographene as a High-Performance Anode Material with High Specific Capacity and Fast Li Diffusion: From Structural, Electronic, and Mechanical Properties to LIB Applications. Journal of Physical Chemistry C, 2019, 123, 21345-21352.	1.5	43
17	Single-atom oxygen reduction reaction electrocatalysts of Fe, Si, and N co-doped carbon with 3D interconnected mesoporosity. Journal of Materials Chemistry A, 2021, 9, 4297-4309.	5.2	43
18	Experimental and Theoretical Insights into Transition-Metal (Mo, Fe) Codoping in a Bifunctional Nickel Phosphide Microsphere Catalyst for Enhanced Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 14169-14179.	2.5	39

#	Article	IF	CITATIONS
19	Designing a high-performance nitrogen-doped titanium dioxide anode material for lithium-ion batteries by unravelling the nitrogen doping effect. Nano Energy, 2020, 74, 104829.	8.2	38
20	Molecular engineering of nanostructures and activities on bifunctional oxygen electrocatalysts for Zinc-air batteries. Applied Catalysis B: Environmental, 2020, 270, 118869.	10.8	34
21	Tuning d-band centers by coupling PdO nanoclusters to WO ₃ nanosheets to promote the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 13490-13500.	5.2	33
22	Experimental and Theoretical Insights into the Borohydride-Based Reduction-Induced Metal Interdiffusion in Fe-Oxide@NiCo ₂ O ₄ for Enhanced Oxygen Evolution. ACS Applied Materials & District Substitution and	4.0	32
23	Adjustable Intermolecular Interactions Allowing 2D Transition Metal Dichalcogenides with Prolonged Scavenging Activity for Reactive Oxygen Species. Small, 2018, 14, e1800026.	5.2	30
24	Three-dimensional evaluation of compositional and structural changes in cycled LiNi1/3Co1/3Mn1/3O2 by atom probe tomography. Journal of Power Sources, 2018, 379, 160-166.	4.0	23
25	Theoretical evaluation of the structure–activity relationship in graphene-based electrocatalysts for hydrogen evolution reactions. RSC Advances, 2017, 7, 27033-27039.	1.7	21
26	Deciphering the Electrocatalytic Activity of Nitrogen-Doped Carbon Embedded with Cobalt Nanoparticles and the Reaction Mechanism of Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 27332-27343.	1.5	18
27	Hybridized heterostructure of CoS and MoS2 nanoparticles for highly-efficient and robust bifunctional water electrolysis. Applied Surface Science, 2022, 592, 153196.	3.1	17
28	Complementary Hybrid Semiconducting Superlattices with Multiple Channels and Mutual Stabilization. Nano Letters, 2020, 20, 4864-4871.	4.5	13
29	Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24404-24414.	4.0	12
30	p- and n-type Doping Effects on the Electrical and Ionic Conductivities of Li4Ti5O12 Anode Materials. Journal of Physical Chemistry C, 2018, 122, 15155-15162.	1.5	10
31	Temperature-dependent lithium diffusion in phographene: Insights from molecular dynamics simulation. Journal of Industrial and Engineering Chemistry, 2020, 81, 287-293.	2.9	10
32	Environmental Stimuliâ€Irresponsive Longâ€Term Radical Scavenging of 2D Transition Metal Dichalcogenides through Defectâ€Mediated Hydrogen Atom Transfer in Aqueous Media. Advanced Functional Materials, 2018, 28, 1802737.	7.8	9
33	Theoretical investigations into the hydrogen evolution reaction of the carbon schwarzites: From electronics to structure-catalytic activity relationship. Carbon, 2022, 190, 136-141.	5.4	9
34	Unraveling the controversy over a catalytic reaction mechanism using a new theoretical methodology: One probe and non-equilibrium surface Green's function. Nano Energy, 2019, 63, 103863.	8.2	7
35	SAXS-guided unbiased coarse-grained Monte Carlo simulation for identification of self-assembly nanostructures and dimensions. Soft Matter, 2022, 18, 5282-5292.	1.2	6
36	Theoretical Basis of Electrocatalysis. , 0, , .		5

#	Article	IF	CITATIONS
37	Molecular layer deposition of charge-transfer complex thin films with visible-light absorption. Organic Electronics, 2018, 52, 237-242.	1.4	4
38	Enhanced catalytic activity of SO _x -incorporated graphene for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 22615-22620.	5.2	4
39	State of charge dependent ordered and disordered phases in a Li[Ni1/3Co1/3Mn1/3]O2 cathode material. Materials Advances, 2021, 2, 3965-3970.	2.6	2
40	Nanoporous <scp>Titaniumâ€Oxo</scp> Molecular Cluster for <scp>CO₂</scp> Selective Adsorption. Bulletin of the Korean Chemical Society, 2021, 42, 1014-1019.	1.0	2
41	Efficiency Tuning of UVA/UVB Absorbance through Control over the Intramolecular Hydrogen Bonding of Triazine Derivatives. Bulletin of the Korean Chemical Society, 2018, 39, 858-863.	1.0	1
42	Bias-Dependent Multichannel Transport in Graphene–Boron Nitride Heterojunction Nanoribbons. ACS Applied Electronic Materials, 2020, 2, 1449-1458.	2.0	1