
Jeongho Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current opinion in medium manganese steel. Materials Science and Technology, 2015, 31, 843-856.	0.8	330
2	The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Acta Materialia, 2014, 78, 369-377.	3.8	279
3	The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Materialia, 2017, 122, 199-206.	3.8	196
4	The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Materialia, 2014, 67, 354-361.	3.8	185
5	The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Materialia, 2016, 113, 1-10.	3.8	140
6	Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Materialia, 2015, 84, 1-8.	3.8	131
7	Lateral AlxGa1â^'xN power rectifiers with 9.7 kV reverse breakdown voltage. Applied Physics Letters, 2001, 78, 823-825.	1.5	93
8	Inductively coupled plasma-induced etch damage of GaN p-n junctions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1139-1143.	0.9	82
9	Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel. Acta Materialia, 2019, 166, 512-530.	3.8	67
10	Deformation behavior and tensile properties of an austenitic Fe-24Mn-4Cr-0.5C high-manganese steel: Effect of grain size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 334-343.	2.6	66
11	The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 9-16.	2.6	62
12	Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties. Journal of Alloys and Compounds, 2016, 681, 580-588.	2.8	59
13	Critical assessment 19: Stacking fault energies of austenitic steels. Materials Science and Technology, 2016, 32, 1-8.	0.8	52
14	Superplasticity in a lean Fe-Mn-Al steel. Nature Communications, 2017, 8, 751.	5.8	51
15	Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 752, 43-54.	2.6	50
16	Al composition dependence of breakdown voltage in AlxGa1â^'xN Schottky rectifiers. Applied Physics Letters, 2000, 76, 1767-1769.	1.5	49
17	Crucial microstructural feature to determine the impact toughness of intercritically annealed medium-Mn steel with triplex-phase microstructure. Acta Materialia, 2019, 164, 122-134.	3.8	46
18	Design for Fe-high Mn alloy with an improved combination of strength and ductility. Scientific Reports, 2017, 7, 3573.	1.6	41

Jeongho Han

#	Article	IF	CITATIONS
19	Temperature dependence and current transport mechanisms in AlxGa1â^'xN Schottky rectifiers. Applied Physics Letters, 2000, 76, 3816-3818.	1.5	38
20	Role of annealing conditions and surface treatment on ohmic contacts to p-GaN and p-Al0.1Ga0.9N/GaN superlattices. Applied Physics Letters, 2001, 79, 3636-3638.	1.5	32
21	Relationship between grain size and ductile-to-brittle transition at room temperature in Fe–18Mn–0.6C–1.5Si twinning-induced plasticity steel. Journal of Alloys and Compounds, 2015, 627, 374-382.	2.8	32
22	Recovering the ductility of medium-Mn steel by restoring the original microstructure. Scripta Materialia, 2021, 190, 16-21.	2.6	31
23	Effect of additive noble gases in chlorine-based inductively coupled plasma etching of GaN, InN, and AlN. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 768-773.	0.9	30
24	Elastic strain energy induced by epsilon martensitic transformation and its contribution to the stacking-fault energy of austenite in Fe–15Mn– x C alloys. Journal of Alloys and Compounds, 2014, 617, 588-596.	2.8	27
25	Improved strength of a medium-Mn steel by V addition without sacrificing ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140681.	2.6	27
26	The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements. Materials Characterization, 2020, 165, 110386.	1.9	27
27	Direct-current characteristics of pnp AlGaN/GaN heterojunction bipolar transistors. Applied Physics Letters, 2000, 76, 2943-2945.	1.5	23
28	The unexpected stress-strain response of medium Mn steel after friction stir welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 340-348.	2.6	22
29	High breakdown voltage Au/Pt/GaN Schottky diodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1135-1138.	0.9	20
30	The effect of Zn coating layers on the hydrogen embrittlement of hot-dip galvanized twinning-induced plasticity steel. Corrosion Science, 2016, 111, 267-274.	3.0	17
31	Redistribution and activation of implanted S, Se, Te, Be, Mg, and C in GaN. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1226-1229.	0.9	14
32	The Effects of Process Temperatures on the Microstructure and Tensile Properties of Warm-Stamped Nb-Bearing Medium-Mn Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1098-1108.	1.1	13
33	A microstructural investigation on deformation mechanisms of Fe–18Cr–12Mn–0.05C metastable austenitic steels containing different amounts of nitrogen. Materials and Design, 2015, 82, 273-280.	3.3	12
34	Drawing Circuits with Carbon Nanotubes: Scratch-Induced Graphoepitaxial Growth of Carbon Nanotubes on Amorphous Silicon Oxide Substrates. Scientific Reports, 2014, 4, 5289.	1.6	11
35	Enhancement of the tensile properties and impact toughness of a medium-Mn steel through the homogeneous microstrain distribution. Materials Characterization, 2021, 174, 110992.	1.9	11
36	Enhancement of hydrogen embrittlement resistance of Fe-Mn-C twinning-induced plasticity steel by partial recrystallization technique. Materials Characterization, 2019, 151, 221-226.	1.9	8

Jeongho Han

#	Article	IF	CITATIONS
37	Effect of Cooling Rate on Microstructure and Hardness during Solution Treatment and Aging Process of Ti-6Al-4V Alloy for Aerospace Components. Journal of Materials Engineering and Performance, 2021, 30, 3406-3415.	1.2	8
38	Characterization of Partitioning in a Medium-Mn Third-Generation AHSS. Microscopy and Microanalysis, 2017, 23, 402-403.	0.2	6
39	Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning. Journal of Materials Science and Technology, 2022, 118, 243-254.	5.6	6
40	Effect of Intercritical Annealing on Microstructure and Tensile Properties of an Ultrafineâ€Grained Dualâ€Phase Low Alloy Steel Containing Titanium. Steel Research International, 2020, 91, 2000118.	1.0	5
41	Design of low-Ni martensitic steels with novel cryogenic impact toughness exceeding 190ÂJ. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142959.	2.6	3
42	A Critical Review on Mediumâ€Mn Steels: Mechanical Properties Governed by Microstructural Morphology. Steel Research International, 2023, 94, .	1.0	2
43	Inhomogeneity of Microstructure and Damping Capacity of a FC25 Disc-Brake Rotor and Their Interrelationship. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3933-3942.	1.1	1
44	Temperature Dependence and Current Transport Mechanisms in AlxGa1â^'xN Schottky Rectifiers. Materials Research Society Symposia Proceedings, 2000, 622, 271.	0.1	0
45	The Cause of Premature Tensile Fracture of Gas-Nitrocarburized Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3912-3918.	1.1	0
46	Reversion to Ultrafine-Grained Austenite in a Medium-Mn AHSS. Microscopy and Microanalysis, 2018, 24, 2228-2229.	0.2	0