
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455195/publications.pdf Version: 2024-02-01

Κριςτινιλ Ημοδων

#	Article	lF	CITATIONS
1	Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity. New Biotechnology, 2022, 70, 28-38.	2.4	9
2	Fungal Lignin-Modifying Peroxidases and H2O2-Producing Enzymes. , 2021, , 247-259.		11
3	Discovery and Functional Analysis of a Salicylic Acid Hydroxylase from Aspergillus niger. Applied and Environmental Microbiology, 2021, 87, .	1.4	17
4	Enhanced Lignocellulolytic Enzyme Activities on Hardwood and Softwood during Interspecific Interactions of White- and Brown-Rot Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 265.	1.5	12
5	Depolymerization of biorefinery lignin by improved laccases of the whiteâ€rot fungus <i>Obba rivulosa</i> . Microbial Biotechnology, 2021, 14, 2140-2151.	2.0	6
6	Laccase as a Tool in Building Advanced Ligninâ€Based Materials. ChemSusChem, 2021, 14, 4615-4635.	3.6	59
7	Production of Recombinant Laccase From Coprinopsis cinerea and Its Effect in Mediator Promoted Lignin Oxidation at Neutral pH. Frontiers in Bioengineering and Biotechnology, 2021, 9, 767139.	2.0	8
8	Colonies of the fungus Aspergillus niger are highly differentiated to adapt to local carbon source variation. Environmental Microbiology, 2020, 22, 1154-1166.	1.8	15
9	On the Effect of Hot-Water Pretreatment in Sulfur-Free Pulping of Aspen and Wheat Straw. ACS Omega, 2020, 5, 265-273.	1.6	12
10	Impacts of holmium and lithium to the growth of selected basidiomycetous fungi and their ability to degrade textile dyes. 3 Biotech, 2020, 10, 357.	1.1	1
11	Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts, 2020, 10, 1032.	1.6	52
12	Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus <i>Pycnoporus</i> . DNA Research, 2020, 27, .	1.5	32
13	Fungal Treatment Modifies Kraft Lignin for Lignin- and Cellulose-Based Carbon Fiber Precursors. ACS Omega, 2020, 5, 6130-6140.	1.6	18
14	Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi. Grand Challenges in Biology and Biotechnology, 2020, , 405-438.	2.4	11
15	Fungal Laccases and Their Potential in Bioremediation Applications. Microbiology Monographs, 2020, , 1-25.	0.3	10
16	Penicillium subrubescens adapts its enzyme production to the composition of plant biomass. Bioresource Technology, 2020, 311, 123477.	4.8	15
17	Applicability of Recombinant Laccases From the White-Rot Fungus Obba rivulosa for Mediator-Promoted Oxidation of Biorefinery Lignin at Low pH. Frontiers in Bioengineering and Biotechnology, 2020, 8, 604497.	2.0	14
18	Cinnamic Acid and Sorbic acid Conversion Are Mediated by the Same Transcriptional Regulator in Aspergillus niger. Frontiers in Bioengineering and Biotechnology, 2019, 7, 249.	2.0	19

#	Article	IF	CITATIONS
19	Discovery of Novelp-Hydroxybenzoate-m-hydroxylase, Protocatechuate 3,4 Ring-Cleavage Dioxygenase, and Hydroxyquinol 1,2 Ring-Cleavage Dioxygenase from the Filamentous FungusAspergillus niger. ACS Sustainable Chemistry and Engineering, 2019, 7, 19081-19089.	3.2	25
20	A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnology Advances, 2019, 37, 107396.	6.0	83
21	Draft Genome Sequences of Three Monokaryotic Isolates of the White-Rot Basidiomycete Fungus Dichomitus squalens. Microbiology Resource Announcements, 2019, 8, .	0.3	22
22	Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnology Advances, 2019, 37, 107361.	6.0	46
23	Draft Genome Sequence of the Basidiomycete White-Rot Fungus Phlebia centrifuga. Genome Announcements, 2018, 6, .	0.8	11
24	Selective Cleavage of Lignin β-‹i>O‹/i>-4 Aryl Ether Bond by β-Etherase of the White-Rot Fungus ‹i>Dichomitus squalens‹/i>. ACS Sustainable Chemistry and Engineering, 2018, 6, 2878-2882.	3.2	66
25	The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Fungal Genetics and Biology, 2018, 112, 12-20.	0.9	9
26	Fungal glucuronoyl esterases: Genome mining based enzyme discovery and biochemical characterization. New Biotechnology, 2018, 40, 282-287.	2.4	29
27	Fungal feruloyl esterases: Functional validation of genome mining based enzyme discovery including uncharacterized subfamilies. New Biotechnology, 2018, 41, 9-14.	2.4	33
28	Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genetics and Biology, 2018, 112, 47-54.	0.9	21
29	Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genetics and Biology, 2018, 112, 40-46.	0.9	42
30	Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli. Studies in Mycology, 2018, 91, 79-99.	4.5	24
31	<i>Dichomitus squalens</i> partially tailors its molecular responses to the composition of solid wood. Environmental Microbiology, 2018, 20, 4141-4156.	1.8	36
32	Role of Fungi in Wood Decay. , 2018, , .		11
33	The Synthetic Potential of Fungal Feruloyl Esterases: A Correlation with Current Classification Systems and Predicted Structural Properties. Catalysts, 2018, 8, 242.	1.6	15
34	Characterization of a feruloyl esterase from <i>Aspergillus terreus</i> facilitates the division of fungal enzymes from Carbohydrate Esterase family 1 of the carbohydrateâ€active enzymes (CAZy) database. Microbial Biotechnology, 2018, 11, 869-880.	2.0	36
35	Efficient Extraction Method for High Quality Fungal RNA from Complex Lignocellulosic Substrates. Methods in Molecular Biology, 2018, 1775, 69-73.	0.4	0
36	The draft genome sequence of the ascomycete fungus Penicillium subrubescens reveals a highly enriched content of plant biomass related CAZymes compared to related fungi. Journal of Biotechnology, 2017, 246, 1-3.	1.9	33

#	Article	IF	CITATIONS
37	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
38	Genome Sequence of the Basidiomycete White-Rot Fungus Trametes pubescens FBCC735. Genome Announcements, 2017, 5, .	0.8	11
39	Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. New Biotechnology, 2017, 37, 200-209.	2.4	52
40	The molecular response of the whiteâ€rot fungus <scp><i>D</i></scp> <i>ichomitus squalens</i> to wood and nonâ€woody biomass as examined by transcriptome and exoproteome analyses. Environmental Microbiology, 2017, 19, 1237-1250.	1.8	55
41	Genetic transformation of the white-rot fungus Dichomitus squalens using a new commercial protoplasting cocktail. Journal of Microbiological Methods, 2017, 143, 38-43.	0.7	12
42	Fungal Ligninolytic Enzymes and Their Applications. , 2017, , 1049-1061.		2
43	Engineering Towards Catalytic Use of Fungal Class-II Peroxidases for Dye-Decolorizing and Conversion of Lignin Model Compounds. Current Biotechnology, 2017, 6, 116-127.	0.2	5
44	Biochemical Characterization of Recombinant Oxalate Decarboxylases of the White Rot Fungus Dichomitus squalens. Current Biotechnology, 2017, 6, 98-104.	0.2	0
45	Fungal Ligninolytic Enzymes and Their Applications. Microbiology Spectrum, 2016, 4, .	1.2	19
46	Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. Fungal Biology, 2016, , 119-160.	0.3	2
47	Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification. New Biotechnology, 2016, 33, 834-841.	2.4	27
48	Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels, 2016, 9, 231.	6.2	133
49	Draft Genome Sequence of the White-Rot Fungus <i>Obba rivulosa</i> 3A-2. Genome Announcements, 2016, 4, .	0.8	15
50	Production of Feruloyl Esterases by Aspergillus Species. , 2016, , 129-144.		1
51	Uncovering the abilities of <scp><i>A</i></scp> <i>garicus bisporus</i> to degrade plant biomass throughout its life cycle. Environmental Microbiology, 2015, 17, 3098-3109.	1.8	49
52	Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens. PLoS ONE, 2015, 10, e0145166.	1.1	22
53	Aromatic Metabolism of Filamentous Fungi in Relation to the Presence of Aromatic Compounds in Plant Biomass. Advances in Applied Microbiology, 2015, 91, 63-137.	1.3	97
54	Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnology for Biofuels, 2015, 8, 107.	6.2	111

#	Article	IF	CITATIONS
55	Fungal colonisation and moisture uptake of torrefied wood, charcoal, and thermally treated pellets during storage. European Journal of Wood and Wood Products, 2015, 73, 709-717.	1.3	16
56	Oxalate-Metabolising Genes of the White-Rot Fungus Dichomitus squalens Are Differentially Induced on Wood and at High Proton Concentration. PLoS ONE, 2014, 9, e87959.	1.1	29
57	Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes. Microbiology and Molecular Biology Reviews, 2014, 78, 614-649.	2.9	340
58	8 Degradation and Modification of Plant Biomass by Fungi. , 2014, , 175-208.		26
59	Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. Fungal Genetics and Biology, 2014, 72, 131-136.	0.9	19
60	Genomics, Lifestyles and Future Prospects of Wood-Decay and Litter-Decomposing Basidiomycota. Advances in Botanical Research, 2014, 70, 329-370.	0.5	87
61	An improved and reproducible protocol for the extraction of high quality fungal RNA from plant biomass substrates. Fungal Genetics and Biology, 2014, 72, 201-206.	0.9	20
62	Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose. Fungal Genetics and Biology, 2014, 72, 91-98.	0.9	31
63	Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 2013, 97, 1589-1599.	1.7	32
64	Agaricus bisporus and related Agaricus species on lignocellulose: Production of manganese peroxidase and multicopper oxidases. Fungal Genetics and Biology, 2013, 55, 32-41.	0.9	26
65	Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Fungal Biology, 2013, 117, 62-70.	1.1	52
66	Correction for Morin et al., Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4146-4146.	3.3	4
67	l-Amino acid oxidase of the fungus Hebeloma cylindrosporum displays substrate preference towards glutamate. Microbiology (United Kingdom), 2012, 158, 272-283.	0.7	27
68	Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17501-17506.	3.3	359
69	Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Applied Microbiology and Biotechnology, 2010, 87, 801-814.	1.7	76
70	Ligninâ€modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review. Journal of Basic Microbiology, 2010, 50, 5-20.	1.8	367
71	Thermotolerant and thermostable laccases. Biotechnology Letters, 2009, 31, 1117-1128.	1.1	176

Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. Microbiology (United) Tj ETQq0 0 0 rgBT /Overback 10 Tf 5 72

#	Article	IF	CITATIONS
73	Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia. Microbiology (United Kingdom), 2008, 154, 2371-2379.	0.7	35
74	Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 2007, 77, 301-309.	1.7	65
75	Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Molecular Biology, 2006, 61, 719-732.	2.0	40
76	Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 2006, 73, 839-849.	1.7	55
77	Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata. Current Genetics, 2006, 49, 97-105.	0.8	24
78	Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Current Genetics, 2006, 50, 323-333.	0.8	37
79	Manganese peroxidase of Agaricus bisporus: grain bran-promoted production and gene characterization. Applied Microbiology and Biotechnology, 2005, 66, 401-407.	1.7	33
80	The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genetics and Biology, 2005, 42, 403-419.	0.9	81
81	Activation of the Bone Morphogenetic Protein Signaling Pathway Induces Inhibin βB-Subunit mRNA and Secreted Inhibin B Levels in Cultured Human Granulosa-Luteal Cells. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1254-1261.	1.8	52
82	Activation of the Bone Morphogenetic Protein Signaling Pathway Induces Inhibin ÂB-Subunit mRNA and Secreted Inhibin B Levels in Cultured Human Granulosa-Luteal Cells. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1254-1261.	1.8	38
83	Assignment <footref rid="foot01">¹</footref> of ACVR2 and ACVR2B the human activin receptor type II and IIB genes to chromosome bands 2q22.2→q23.3 and 3p22 and the human follistatin gene (FST) to chromosome 5q11.2 by FISH. Cytogenetic and Genome Research, 1999, 87, 219-220.	0.6	9
84	Co-ordinate expression of activin A and its type I receptor mRNAs during phorbol ester-induced differentiation of human K562 erythroleukemia cells. Molecular and Cellular Endocrinology, 1999, 153, 137-145.	1.6	7
85	Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mechanisms of Development, 1995, 50, 229-245.	1.7	190
86	Regulation of inhibin alpha- and beta A-subunit messenger ribonucleic acid levels by chorionic gonadotropin and recombinant follicle-stimulating hormone in cultured human granulosa-luteal cells Journal of Clinical Endocrinology and Metabolism, 1994, 79, 1670-1677.	1.8	31
87	The tissue distribution of activin beta A- and beta B-subunit and follistatin messenger ribonucleic acids suggests multiple sites of action for the activin-follistatin system during human development. Journal of Clinical Endocrinology and Metabolism, 1994, 78, 1521-1524.	1.8	100
88	Regulation of inhibin alpha- and beta A-subunit messenger ribonucleic acid levels by chorionic gonadotropin and recombinant follicle- stimulating hormone in cultured human granulosa-luteal cells. Journal of Clinical Endocrinology and Metabolism, 1994, 79, 1670-1677.	1.8	18
89	Inhibin/activin subunit mRNA expression in human granulosa-luteal cells. Molecular and Cellular Endocrinology, 1993, 92, R15-R20.	1.6	49