Vito De Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/245500/publications.pdf

Version: 2024-02-01

104 papers 5,307 citations

76326 40 h-index 70 g-index

109 all docs

109 docs citations

109 times ranked 4480 citing authors

#	Article	IF	CITATIONS
1	Voltage Dependent Anion Channel 3 (VDAC3) protects mitochondria from oxidative stress. Redox Biology, 2022, 51, 102264.	9.0	22
2	Editorial: VDAC Structure and Function: An Up-to-Date View. Frontiers in Physiology, 2022, 13, 871586.	2.8	1
3	α-Synuclein A53T Promotes Mitochondrial Proton Gradient Dissipation and Depletion of the Organelle Respiratory Reserve in a Neuroblastoma Cell Line. Life, 2022, 12, 894.	2.4	4
4	Renaissance of VDAC: New Insights on a Protein Family at the Interface between Mitochondria and Cytosol. Biomolecules, 2021, 11, 107.	4.0	34
5	Voltage-Dependent Anion Selective Channel Isoforms in Yeast: Expression, Structure, and Functions. Frontiers in Physiology, 2021, 12, 675708.	2.8	13
6	VDAC Genes Expression and Regulation in Mammals. Frontiers in Physiology, 2021, 12, 708695.	2.8	21
7	Cell-free electrophysiology of human VDACs incorporated into nanodiscs: An improved method. Biophysical Reports, 2021, 1, 100002.	1.2	6
8	VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. International Journal of Molecular Sciences, 2021, 22, 12833.	4.1	8
9	Deletion of Voltage-Dependent Anion Channel 1 knocks mitochondria down triggering metabolic rewiring in yeast. Cellular and Molecular Life Sciences, 2020, 77, 3195-3213.	5 . 4	25
10	NRF-1 and HIF-1 \hat{l} ± contribute to modulation of human VDAC1 gene promoter during starvation and hypoxia in HeLa cells. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148289.	1.0	14
11	Is the Secret of VDAC Isoforms in Their Gene Regulation? Characterization of Human VDAC Genes Expression Profile, Promoter Activity, and Transcriptional Regulators. International Journal of Molecular Sciences, 2020, 21, 7388.	4.1	15
12	Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Frontiers in Cell and Developmental Biology, 2020, 8, 397.	3.7	32
13	A High Resolution Mass Spectrometry Study Reveals the Potential of Disulfide Formation in Human Mitochondrial Voltage-Dependent Anion Selective Channel Isoforms (hVDACs). International Journal of Molecular Sciences, 2020, 21, 1468.	4.1	14
14	A lower affinity to cytosolic proteins reveals VDAC3 isoform-specific role in mitochondrial biology. Journal of General Physiology, 2020, 152, .	1.9	36
15	Recombinant yeast VDAC 2: a comparison of electrophysiological features with the native form. FEBS Open Bio, 2019, 9, 1184-1193.	2.3	8
16	yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 270-279.	1.0	21
17	Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel. ACS Omega, 2018, 3, 11415-11425.	3 . 5	7
18	Post-translational modifications of VDAC1 and VDAC2 cysteines from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 806-816.	1.0	32

#	Article	IF	Citations
19	VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Frontiers in Chemistry, 2018, 6, 108.	3.6	113
20	Hypoxic-induced truncation of voltage-dependent anion channel 1 is mediated by both asparagine endopeptidase and calpain 1 activities. Oncotarget, 2018, 9, 12825-12841.	1.8	12
21	Anti-Cancer Compounds Targeted to VDAC: Potential and Perspectives. Current Medicinal Chemistry, 2018, 24, 4447-4469.	2.4	44
22	High resolution mass spectrometry characterization of the oxidation pattern of methionine and cysteine residues in rat liver mitochondria voltage-dependent anion selective channel 3 (VDAC3). Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 301-311.	2.6	29
23	VDAC3 As a Potential Marker of Mitochondrial Status Is Involved in Cancer and Pathology. Frontiers in Oncology, 2016, 6, 264.	2.8	41
24	A computational study of ion current modulation in hVDAC3 induced by disulfide bonds. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 813-823.	2.6	15
25	Unexpected Modifications of Cysteines in VDAC3: Indication that VDAC3 may Signal the Mitochondrial Intermembrane Redox State. Biophysical Journal, 2016, 110, 19a.	0.5	0
26	Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability. Scientific Reports, 2016, 6, 34802.	3.3	53
27	Novel Compounds Targeting the Mitochondrial Protein VDAC1 Inhibit Apoptosis and Protect against Mitochondrial Dysfunction. Journal of Biological Chemistry, 2016, 291, 24986-25003.	3.4	83
28	Neurospora crassatox-1Gene Encodes a pH- and Temperature-Tolerant Mini-Cellulase. Journal of Agricultural and Food Chemistry, 2016, 64, 4751-4757.	5.2	0
29	Electrophysiological Characterization of two Novel Ion Channels of Mitochondria. Biophysical Journal, 2016, 110, 609a.	0.5	0
30	Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 789-798.	1.0	27
31	Role of cysteines in mammalian VDAC isoforms' function. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1219-1227.	1.0	64
32	VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications. Oncotarget, 2016, 7, 2249-2268.	1.8	78
33	The Overexpression of Superoxide Dismutase 1 Restores Growth Defect in a Porin1-Less Yeast Strain and Improves Mitochondrial Metabolism. Biophysical Journal, 2015, 108, 611a.	0.5	0
34	Larval population structure of <i>Engraulis encrasicolus</i> in the Strait of Sicily as revealed by morphometric and genetic analysis. Fisheries Oceanography, 2015, 24, 135-149.	1.7	18
35	The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities. Biochemistry, 2015, 54, 5646-5656.	2.5	19
36	Charged Residues Distribution Modulates Selectivity of the Open State of Human Isoforms of the Voltage Dependent Anion-Selective Channel. PLoS ONE, 2014, 9, e103879.	2.5	45

3

#	Article	IF	Citations
37	Recombinant Human Voltage Dependent Anion Selective Channel Isoform 3 (hVDAC3) Forms Pores with a Very Small Conductance. Cellular Physiology and Biochemistry, 2014, 34, 842-853.	1.6	60
38	Live cell interactome of the human voltage dependent anion channel 3 (VDAC3) revealed in HeLa cells by affinity purification tag technique. Molecular BioSystems, 2014, 10, 2134-2145.	2.9	28
39	Genetic Reduction of Mammalian Target of Rapamycin Ameliorates Alzheimer's Disease-Like Cognitive and Pathological Deficits by Restoring Hippocampal Gene Expression Signature. Journal of Neuroscience, 2014, 34, 7988-7998.	3.6	176
40	Deletion of \hat{l}^2 -strands 9 and 10 converts VDAC1 voltage-dependence in an asymmetrical process. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 793-805.	1.0	32
41	The Mitochondrial Italian Human Proteome Project Initiative (mt-HPP). Molecular BioSystems, 2013, 9, 1984-92.	2.9	10
42	The Voltage-Dependent Anion Selective Channel 1 (VDAC1) Topography in the Mitochondrial Outer Membrane as Detected in Intact Cell. PLoS ONE, 2013, 8, e81522.	2.5	62
43	Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma. Blood Transfusion, 2013, 11, 61-70.	0.4	12
44	VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death and Differentiation, 2012, 19, 267-273.	11,2	255
45	VDAC isoforms in mammals. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1466-1476.	2.6	204
46	Investigations on N-Terminal Chimeras of VDAC Isoforms. Biophysical Journal, 2011, 100, 250a-251a.	0.5	0
47	Geographically Widespread Swordfish Barcode Stock Identification: A Case Study of Its Application. PLoS ONE, 2011, 6, e25516.	2.5	29
48	Generation of artificial channels by multimerization of \hat{l}^2 -strands from natural porin. Biological Chemistry, 2011, 392, 617-24.	2.5	6
49	Characterization of human VDAC isoforms: A peculiar function for VDAC3?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1268-1275.	1.0	142
50	Voltageâ€dependent anionâ€selective channel (VDAC) in the plasma membrane. FEBS Letters, 2010, 584, 1793-1799.	2.8	144
51	Swapping of the Nâ€terminus of VDAC1 with VDAC3 restores full activity of the channel and confers antiâ€aging features to the cell. FEBS Letters, 2010, 584, 2837-2844.	2.8	58
52	VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular Aspects of Medicine, 2010, 31, 227-285.	6.4	607
53	Molecular and functional characterization of VDAC2 purified from mammal spermatozoa. Bioscience Reports, 2009, 29, 351-362.	2.4	56
54	Carnosinase Levels in Aging Brain: Redox State Induction and Cellular Stress Response. Antioxidants and Redox Signaling, 2009, 11, 2759-2775.	5.4	55

#	Article	IF	Citations
55	Two Structurally Different Rituximab-Specific CD20 Mimotope Peptides Reveal That Rituximab Recognizes Two Different CD20-Associated Epitopes. Journal of Immunology, 2009, 182, 416-423.	0.8	27
56	Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Research, 2009, 19, 1363-1376.	12.0	120
57	Structure of the voltage dependent anion channel: state of the art. Journal of Bioenergetics and Biomembranes, 2008, 40, 139-147.	2.3	67
58	Porin isoform 2 has a different localization in Drosophila melanogaster ovaries than porin 1. Journal of Bioenergetics and Biomembranes, 2008, 40, 219-226.	2.3	8
59	Genetic structure of the killifish Aphanius fasciatus, Nardo 1827 (Teleostei, Cyprinodontidae), results of mitochondrial DNA analysis. Journal of Fish Biology, 2008, 72, 1154-1173.	1.6	22
60	Determination of the Conformation of the Human VDAC1 N-Terminal Peptide, a Protein Moiety Essential for the Functional Properties of the Pore. ChemBioChem, 2007, 8, 744-756.	2.6	66
61	Expression and localization in spermatozoa of the mitochondrial porin isoform 2 in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2006, 346, 665-670.	2.1	21
62	Conformational Properties and Functional Role of VDAC N-Terminal Peptide., 2006,, 625-626.		0
63	Gene Family Expression and Multitopological Localization of Eukaryotic Porin/Voltage Dependent Anion-Selective Channel (VDAC): Intracellular Trafficking and Alternative Splicing., 2005,, 309-337.		1
64	Voltage-dependent anion-selective channel 1 (VDAC1) \hat{a} €"a mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane. International Journal of Biochemistry and Cell Biology, 2005, 37, 277-282.	2.8	62
65	Functional Characterization of a Second Porin Isoform in Drosophila melanogaster. Journal of Biological Chemistry, 2004, 279, 25364-25373.	3.4	28
66	VDAC1 Is a Transplasma Membrane NADH-Ferricyanide Reductase. Journal of Biological Chemistry, 2004, 279, 4811-4819.	3.4	141
67	Voltage-dependent Anion-selective Channels VDAC2 and VDAC3 Are Abundant Proteins in Bovine Outer Dense Fibers, a Cytoskeletal Component of the Sperm Flagellum. Journal of Biological Chemistry, 2004, 279, 15281-15288.	3.4	103
68	High levels of the mitochondrial large ribosomal subunit protein 40 prevent loss of mitochondrial DNA in nullmmf1 Saccharomyces cerevisiae cells. Yeast, 2004, 21, 539-548.	1.7	13
69	New functions of an old protein: the eukaryotic porin or voltage dependent anion selective channel (VDAC). Italian Journal of Biochemistry, 2003, 52, 17-24.	0.3	29
70	A 3D model of the voltage-dependent anion channel (VDAC). FEBS Letters, 2002, 520, 1-7.	2.8	87
71	Schizosaccharomyces pombe Pmf1p is structurally and functionally related to Mmf1p ofSaccharomyces cerevisiae. Yeast, 2002, 19, 703-711.	1.7	7
72	Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Science, 2001, 10, 779-787.	7.6	111

#	Article	lF	Citations
73	Extramitochondrial porin: facts and hypotheses. Journal of Bioenergetics and Biomembranes, 2000, 32, 79-89.	2.3	55
74	Characterization of channel-forming activity in muscle biopsy from a porin-deficient human patient. Journal of Bioenergetics and Biomembranes, 2000, 32, 585-593.	2.3	7
75	Intracellular localization and isoform expression of the voltage-dependent anion channel (VDAC) in normal and dystrophic skeletal muscle. Journal of Muscle Research and Cell Motility, 2000, 21, 433-442.	2.0	27
76	Characterization of the Human Porin Isoform 1 (HVDAC1) Gene by Amplification on the Whole Human Genome: A Tool for Porin Deficiency Analysis. Biochemical and Biophysical Research Communications, 2000, 270, 787-792.	2.1	17
77	Porin Is Present in the Plasma Membrane Where It Is Concentrated in Caveolae and Caveolae-related Domains. Journal of Biological Chemistry, 1999, 274, 29607-29612.	3.4	112
78	The Drosophila melanogaster gene for the NADH:ubiquinone oxidoreductase acyl carrier protein: developmental expression analysis and evidence for alternatively spliced forms. Molecular Genetics and Genomics, 1999, 261, 690-697.	2.4	20
79	Identification of nuclear genes encoding mitochondrial proteins: isolation of a collection of D. melanogaster cDNAs homologous to sequences in the Human Gene Index database. Molecular Genetics and Genomics, 1999, 261, 64-70.	2.4	18
80	Mapping of the Human Voltage-Dependent Anion Channel Isoforms 1 and 2 Reconsidered. Biochemical and Biophysical Research Communications, 1999, 255, 707-710.	2.1	24
81	Presence of a voltage-dependent anion channel 1 in the rat postsynaptic density fraction. NeuroReport, 1999, 10, 443-447.	1.2	28
82	Evaluation of biotinylated cells as a source of antigens for characterization of their molecular profile. International Journal of Clinical and Laboratory Research, 1998, 28, 246-251.	1.0	3
83	Sequence and expression pattern of the Drosophila melanogastermitochondrial porin gene: evidence of a conserved protein domain between fly and mouse. FEBS Letters, 1998, 430, 327-332.	2.8	15
84	Novel Aspects of the Electrophysiology of Mitochondrial Porin. Biochemical and Biophysical Research Communications, 1998, 243, 258-263.	2.1	42
85	Doubleâ€stranded DNA can be translocated across a planar membrane containing purified mitochondrial porin. FASEB Journal, 1998, 12, 495-502.	0.5	62
86	Cloning and chromosomal localization of a cDNA encoding a mitochondrial porin fromDrosophila melanogaster. FEBS Letters, 1996, 384, 9-13.	2.8	25
87	The mitochondrial permeability transition pore may comprise VDAC molecules. FEBS Letters, 1993, 330, 206-210.	2.8	159
88	Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). Journal of Bioenergetics and Biomembranes, 1992, 24, 21-26.	2.3	63
89	Peptide-specific antibodies and proteases as probes of the transmembrane topology of the bovine heart mitochondrial porin. Biochemistry, 1991, 30, 10191-10200.	2.5	125
90	Characterization of pore-forming activity in liver mitochondria from Anguilla anguilla. Two porins in mitochondria?. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1061, 279-286.	2.6	22

#	Article	IF	CITATION
91	Characterization of SH groups in porin of bovine heart mitochondria. Porin cysteines are localized in the channel walls. FEBS Journal, 1991, 202, 903-911.	0.2	21
92	Positive residues involved in the voltage-gating of the mitochondrial porin-channel are localized in the external moiety of the pore. FEBS Letters, 1990, 274, 122-126.	2.8	8
93	Demonstration and characterization of human cardiac porin: A voltage-dependent channel involved in adenine nucleotide movement across the outer mitochondrial membrane. Biochemical Medicine and Metabolic Biology, 1989, 42, 161-169.	0.7	8
94	Interaction of non-classical detergents with the mitochondrial porin. A new purification procedure and characterization of the pore-forming unit. FEBS Journal, 1989, 183, 179-187.	0.2	102
95	Purification and properties of the voltage-dependent anion channel of the outer mitochondrial membrane. Journal of Bioenergetics and Biomembranes, 1989, 21, 417-425.	2.3	29
96	Further investigation on the high-conductance ion channel of the inner membrane of mitochondria. Journal of Bioenergetics and Biomembranes, 1989, 21, 485-496.	2.3	53
97	Characterization of the mitochondrial porin from Drosophila melanogaster. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 1-7.	2.6	42
98	Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 894, 109-119.	1.0	120
99	A simple and rapid method for the purification of the mitochondrial porin from mammalian tissues. Biochimica Et Biophysica Acta - Biomembranes, 1987, 905, 499-502.	2.6	92
100	Purification of the glutamine synthetase II isozyme of Drosophila melanogaster and structural and functional comparison of glutamine synthetases I and II. Biochemical Genetics, 1987, 25, 821-836.	1.7	20
101	Pore formation by the mitochondrial porin of rat brain in lipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 860, 268-276.	2.6	62
102	The 35 kDa DCCD-binding protein from pig heart mitochondria is the mitochondrial porin. Biochimica Et Biophysica Acta - Biomembranes, 1985, 813, 230-242.	2.6	86
103	Purification of the active mitochondrial phosphate carrier by affinity chromatography with an organomercurial agarose column. FEBS Letters, 1982, 148, 103-106.	2.8	24
104	Purification and genetic control of NAD-dependent glutamate dehydrogenase from Drosophila melanogaster. Biochemical Genetics, 1982, 20, 449-460.	1.7	11