Arnaud Martel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2454877/publications.pdf

Version: 2024-02-01

42 papers

679 citations

16 h-index 25 g-index

58 all docs

58 docs citations

58 times ranked 736 citing authors

#	Article	IF	CITATIONS
1	$\langle i \rangle N \langle i \rangle$ -Benzyl Aspartate Nitrones: Unprecedented Single-Step Synthesis and $[3+2]$ Cycloaddition Reactions with Alkenes. Organic Letters, 2008, 10, 4493-4496.	4.6	52
2	α-Halogenoacetamides: versatile and efficient tools for the synthesis of complex aza-heterocycles. Organic and Biomolecular Chemistry, 2019, 17, 8467-8485.	2.8	52
3	Hetero-Dielsâ^'Alder Reactions of Cyclic Ketone Derived Enamide. A New and Efficient Concept for the Asymmetric Robinson Annulation. Organic Letters, 2009, 11, 3060-3063.	4.6	44
4	Access to α-Substituted Amino Acid Derivatives via 1,3-Dipolar Cycloaddition of α-Amino Ester Derived Nitrones. Journal of Organic Chemistry, 2010, 75, 611-620.	3.2	44
5	1,3-Dipolar Cycloadditions of Nitrones to Heterosubstituted Alkenes. Part 1: Oxa and Aza-substituted Alkenes. Organic Preparations and Procedures International, 2010, 42, 387-431.	1.3	37
6	1,3-Dipolar Cycloaddition of N-Substituted Dipolarophiles and Nitrones:  Highly Efficient Solvent-Free Reaction. Journal of Organic Chemistry, 2008, 73, 2621-2632.	3.2	35
7	Enantioselective Ruthenium-Catalyzed 1,3-Dipolar Cycloadditions between <i>C</i> CCarboalkoxy Ketonitrones and Methacrolein: Solvent Effect on Reaction Selectivity and Its Rational. Journal of Organic Chemistry, 2014, 79, 3414-3426.	3.2	32
8	1,3-Dipolar Cycloadditions of Nitrones to Hetero-substituted Alkenes Part 2: Sila-, Thia-, Phospha- and Halo-substituted Alkenes. Organic Preparations and Procedures International, 2012, 44, 1-81.	1.3	30
9	Lewis Acid Catalysed [4+2] Heterocycloadditions between Ketone Enol Ethers and Î ² -Ethylenic α-Oxo Esters. European Journal of Organic Chemistry, 2002, 2002, 514-525.	2.4	29
10	Asymmetric Synthesis of $\hat{l}\pm,\hat{l}\pm$ -Disubstituted Amino Acids by Cycloaddition of ($\langle i\rangle$ E $\langle i\rangle$)-Ketonitrones with Vinyl Ethers. Organic Letters, 2014, 16, 1936-1939.	4.6	29
11	Stille Crossâ€Coupling Reactions with Tin Reagents Supported on Ionic Liquids. European Journal of Organic Chemistry, 2009, 2009, 3249-3257.	2.4	24
12	Enantioselective Access to Robinson Annulation Products and Michael Adducts as Precursors. Angewandte Chemie - International Edition, 2017, 56, 12424-12458.	13.8	23
13	Stereospecific Câ€Glycosylation by Mizoroki–Heck Reaction: A Powerful and Easyâ€toâ€Setâ€Up Synthetic to Access <i>α</i> â€and <i>β</i> â€Arylâ€ <i>C</i> â€Glycosides. Chemistry - A European Journal, 2018, 24, 14069-14074.		21
14	Simple Access to Highly Functional Bicyclic γ―and Î'‣actams: Origins of Chirality Transfer to Contiguous Tertiary/Quaternary Stereocenters Assessed by DFT. Chemistry - A European Journal, 2015, 21, 2966-2979.	3.3	20
15	Domino Process Optimized viaab InitioStudy for an Alternative Access to Bicyclic Lactams. Organic Letters, 2011, 13, 4004-4007.	4.6	17
16	Low temperature syntheses of thioketals from enol ethers and carbonyl compounds. Tetrahedron Letters, 2003, 44, 1491-1494.	1.4	16
17	Synthesis of Oxazolidin-4-ones: Domino O-Alkylation/Aza-Michael/Intramolecular Retro-Claisen Condensation. Organic Letters, 2016, 18, 2383-2386.	4.6	16
18	Eu(fod)3 and SnCl4-catalyzed heterocycloadditions of O-silyl enol ethers deriving from cyclic ketones. Tetrahedron Letters, 1998, 39, 8647-8650.	1.4	15

#	Article	IF	Citations
19	High-Pressure Hetero-Dielsâ-'Alder Route to $(\hat{A}\pm)$ -6,6,6-Trifluoro- \hat{I}^2 - <i>C</i> Naphthyl Glycosides. Organic Letters, 2009, 11, 1619-1622.	4.6	15
20	Organocatalytic enantio- and diastereoselective 1,3-dipolar cycloaddition between alanine-derived ketonitrones and E-crotonaldehyde: efficiency and full stereochemical studies. Tetrahedron: Asymmetry, 2012, 23, 1670-1677.	1.8	14
21	Evidence of New Fluorinated Coordination Compounds in the Composition Space Diagram of FeF ₃ /ZnF ₂ –H <i>amtetraz</i> HF _{aq} System. Crystal Growth and Design, 2015, 15, 4248-4255.	3.0	12
22	Enantioselective 1,3â€Dipolar Cycloaddition Reactions of <i>C</i> àâ€Carboxy Ketonitrones and Enals with MacMillan Catalysts: Evidence of a Nonconcerted Mechanism. European Journal of Organic Chemistry, 2017, 2017, 6763-6774.	2.4	11
23	Practical asymmetric access to carboxy-differentiated aspartate derivatives via 1,3-dipolar cycloaddition of a nitrone with (R)-4-ethyl-N-vinyloxazolidin-2-one. Tetrahedron: Asymmetry, 2008, 19, 2084-2087.	1.8	10
24	Chemo-, Regio-, and Stereoselective Synthesis of Polysusbtituted Oxazolo [3,2- <i>d</i>) [1,4] oxazepin-5(3 <i>H</i>) ones via a Domino oxa-Michael/aza-Michael/Williamson Cycloetherification Sequence. Journal of Organic Chemistry, 2017, 82, 5798-5809.	3.2	10
25	Asymmetric Access to αâ€Substituted Functional Aspartic Acid Derivatives by a [3+2] Strategy Employing a Chiral Dienophile. European Journal of Organic Chemistry, 2014, 2014, 2924-2932.	2.4	9
26	A Convergent Heteroâ€Diels–Alder Strategy for Asymmetric Access to a Lactone Containing Two Lipidic Chains. European Journal of Organic Chemistry, 2012, 2012, 3727-3731.	2.4	8
27	[4+2]/HyBRedOx Approach to <i>C</i> àêNaphthyl Glycosides: Failure in the Projuglone Series and Reinvestigation of the HyBRedOx Sequence. European Journal of Organic Chemistry, 2009, 2009, 412-422.	2.4	7
28	Enantioselektive Synthese von Robinsonâ€Anellierungsprodukten und Michaelâ€Addukten als Vorstufen. Angewandte Chemie, 2017, 129, 12598-12633.	2.0	7
29	N-(\hat{l}^2 , \hat{l}^2 -Difluorovinyl)oxazolidin-2-ones: First Synthesis and Application in [3+2]- and [4+2]-Cycloaddition-Type Reactions. Synlett, 2009, 2009, 2492-2496.	1.8	6
30	[3+2] Route to Quaternary Oxaprolinol Derivatives as Masked Precursors of Disubstituted β ³ ,β ³ â€Amino Aldehyde. European Journal of Organic Chemistry, 2015, 2015, 3923-3934.	2.4	6
31	Stereodivergent approach in the protected glycal synthesis of L-vancosamine, L-saccharosamine, L-daunosamine and L-ristosamine involving a ring-closing metathesis step. Beilstein Journal of Organic Chemistry, 2018, 14, 2949-2955.	2.2	6
32	Access to C-protected \hat{l}^2 -amino-aldehydes via transacetalization of 6-alcoxy tetrahydrooxazinones and use for pseudo-peptide synthesis. Tetrahedron, 2012, 68, 2179-2188.	1.9	4
33	A Large-Scale Low-Cost Preparation of N-Benzylhydroxylamine Hydrochloride. Synthesis, 2009, 2009, 3174-3176.	2.3	3
34	A Practical and Cost-Effective Method for the Synthesis of Bicyclo [2.2.2] octane-1,4-dicarboxylic Acid. Synthesis, 2015, 47, 2185-2187.	2.3	3
35	Synthesis of Constrained <i>C</i> àê€Glycosyl Amino Acid Derivatives Involving 1,3â€Dipolar Cycloaddition of Cyclic Nitrone as Key Step. European Journal of Organic Chemistry, 2020, 2020, 6749-6757.	2.4	3
36	Î-Valerolactamic Quaternary Amino Acid Derivatives: Enantiodivergent Synthesis and Evidence for Stereodifferentiated Î ² -Turn-Inducing Properties. Journal of Organic Chemistry, 2021, 86, 8041-8055.	3.2	2

3

#	Article	IF	CITATIONS
37	Low-Temperature Syntheses of Thioketals from Enol Ethers and Carbonyl Compounds ChemInform, 2003, 34, no.	0.0	1
38	New N-Substituted Dipolarophiles in 1,3-Dipolar Cycloaddition of Nitrones. Synlett, 2006, 2006, 3255-3258.	1.8	1
39	Trimethylsilyl Trifluoromethanesulfonate Mediated Addition-Cyclization of N-Vinyloxazolidin-2-ones to Nitrones: An Efficient Access to 4-Substituted 5-Azaisoxazolidines. Synlett, 2008, 2008, 2041-2045.	1.8	1
40	TIPS-Diazoacetone Aldol Addition: Mechanistic Aspects and Contribution to the Synthesis. Journal of Organic Chemistry, 2021, 86, 4917-4931.	3.2	1
41	A [4+2] Heterocycloaddition Route to (±)-9-Decanolides. Synthesis, 2003, 2003, 0539-0544.	2.3	O
42	Oxa–diketopiperazines: Access and Conformational Analysis of Potential Turn Inducers. ChemistrySelect, 2017, 2, 5824-5827.	1.5	0