
Patrick W Mantyh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2454862/publications.pdf Version: 2024-02-01

DATRICK MANTYH

#	Article	IF	CITATIONS
1	Role of neuraxial drug delivery in cancer pain therapy. Future Drug Discovery, 2020, 2, FDD49.	0.8	О
2	Mechanisms that drive bone pain across the lifespan. British Journal of Clinical Pharmacology, 2019, 85, 1103-1113.	1.1	45
3	Antiâ€nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Veterinary Record, 2019, 184, 23-23.	0.2	61
4	The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur. Neuroscience, 2018, 387, 178-190.	1.1	99
5	Anti–nerve growth factor does not change physical activity in normal young or aging mice but does increase activity in mice with skeletal pain. Pain, 2018, 159, 2285-2295.	2.0	9
6	New Insights in Understanding and Treating Bone Fracture Pain. Current Osteoporosis Reports, 2018, 16, 325-332.	1.5	55
7	Anti–nerve growth factor therapy increases spontaneous day/night activity in mice with orthopedic surgery–induced pain. Pain, 2017, 158, 605-617.	2.0	12
8	Immunohistochemical localization of nerve growth factor, tropomyosin receptor kinase A, and p75 in the bone and articular cartilage of the mouse femur. Molecular Pain, 2017, 13, 174480691774546.	1.0	18
9	Mice with cancer-induced bone pain show a marked decline in day/night activity. Pain Reports, 2017, 2, e614.	1.4	11
10	AAPT Diagnostic Criteria for Chronic Cancer Pain Conditions. Journal of Pain, 2017, 18, 233-246.	0.7	42
11	Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent. Breast Cancer: Targets and Therapy, 2016, 8, 59.	1.0	19
12	Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain. Pain, 2016, 157, 1239-1247.	2.0	39
13	Preventing painful age-related bone fractures. Molecular Pain, 2016, 12, 174480691667714.	1.0	12
14	The cystine/glutamate antiporter system xc â^' drives breast tumor cell glutamate release and cancer-induced bone pain. Pain, 2016, 157, 2605-2616.	2.0	32
15	Sclerostin Immunoreactivity Increases in Cortical Bone Osteocytes and Decreases in Articular Cartilage Chondrocytes in Aging Mice. Journal of Histochemistry and Cytochemistry, 2016, 64, 179-189.	1.3	14
16	Bone cancer: current opinion in palliative care. , 2015, , 579-589.		0
17	Spinal Dopaminergic Projections Control the Transition to Pathological Pain Plasticity via a D ₁ /D ₅ -Mediated Mechanism. Journal of Neuroscience, 2015, 35, 6307-6317.	1.7	63
18	Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor. Pain, 2015, 156, 157-165.	2.0	45

PATRICK W MANTYH

#	Article	IF	CITATIONS
19	NGF Blockade at Early Times during Bone Cancer Development Attenuates Bone Destruction and Increases Limb Use. Cancer Research, 2014, 74, 7014-7023.	0.4	43
20	Bone cancer pain. Current Opinion in Supportive and Palliative Care, 2014, 8, 83-90.	0.5	140
21	The neurobiology of skeletal pain. European Journal of Neuroscience, 2014, 39, 508-519.	1.2	146
22	Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain, 2014, 155, 2323-2336.	2.0	70
23	The ACTTION-American Pain Society Pain Taxonomy (AAPT): An Evidence-Based and Multidimensional Approach to Classifying Chronic Pain Conditions. Journal of Pain, 2014, 15, 241-249.	0.7	159
24	Disease modification of breast cancer–induced bone remodeling by cannabinoid 2 receptor agonists. Journal of Bone and Mineral Research, 2013, 28, 92-107.	3.1	64
25	Pharmacology of Modality-Specific Transient Receptor Potential Vanilloid-1 Antagonists That Do Not Alter Body Temperature. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 416-428.	1.3	75
26	The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain. Neurobiology of Aging, 2012, 33, 921-932.	1.5	50
27	Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Research and Therapy, 2012, 14, R101.	1.6	87
28	Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. Arthritis and Rheumatism, 2012, 64, 2223-2232.	6.7	127
29	Sustained blockade of neurotrophin receptors TrkA, TrkB and TrkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone, 2011, 48, 389-398.	1.4	59
30	Breast Cancer-Induced Bone Remodeling, Skeletal Pain, and Sprouting of Sensory Nerve Fibers. Journal of Pain, 2011, 12, 698-711.	0.7	154
31	Antagonism of Nerve Growth Factor-TrkA Signaling and the Relief of Pain. Anesthesiology, 2011, 115, 189-204.	1.3	285
32	Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain, 2011, 152, 2564-2574.	2.0	156
33	Pathological Sprouting of Adult Nociceptors in Chronic Prostate Cancer-Induced Bone Pain. Journal of Neuroscience, 2010, 30, 14649-14656.	1.7	172
34	A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss. Life Sciences, 2010, 86, 646-653.	2.0	71
35	A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: Therapeutic opportunity for treating skeletal pain. Bone, 2010, 46, 306-313.	1.4	136
36	Administration of a Tropomyosin Receptor Kinase Inhibitor Attenuates Sarcoma-Induced Nerve Sprouting, Neuroma Formation and Bone Cancer Pain. Molecular Pain, 2010, 6, 1744-8069-6-87.	1.0	91

PATRICK W MANTYH

#	Article	IF	CITATIONS
37	New advances in musculoskeletal pain. Brain Research Reviews, 2009, 60, 187-201.	9.1	62
38	A Fracture Pain Model in the Rat. Anesthesiology, 2008, 108, 473-483.	1.3	49
39	Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture. Pain, 2007, 133, 183-196.	2.0	99
40	Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: Implications for the generation and maintenance of bone fracture pain. Neuroscience Letters, 2007, 427, 148-152.	1.0	104
41	Effects of a Monoclonal Antibody Raised Against Nerve Growth Factor on Skeletal Pain and Bone Healing After Fracture of the C57BL/6J Mouse Femur. Journal of Bone and Mineral Research, 2007, 22, 1732-1742.	3.1	101
42	Similarities and Differences in Tumor Growth, Skeletal Remodeling and Pain in an Osteolytic and Osteolytic and Osteoblastic Model of Bone Cancer. Clinical Journal of Pain, 2006, 22, 587-600.	0.8	78
43	A Blocking Antibody to Nerve Growth Factor Attenuates Skeletal Pain Induced by Prostate Tumor Cells Growing in Bone. Cancer Research, 2005, 65, 9426-9435.	0.4	196
44	Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Experimental Neurology, 2005, 193, 85-100.	2.0	180
45	Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain, 2005, 115, 128-141.	2.0	263
46	Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression. Pain, 2005, 119, 233-246.	2.0	94
47	Selective Blockade of the Capsaicin Receptor TRPV1 Attenuates Bone Cancer Pain. Journal of Neuroscience, 2005, 25, 3126-3131.	1.7	354
48	Analgesic Efficacy of Bradykinin B1 Antagonists in a Murine Bone Cancer Pain Model. Journal of Pain, 2005, 6, 771-775.	0.7	48
49	Pathophysiology of bone cancer pain. The Journal of Supportive Oncology, 2005, 3, 15-24.	2.3	78
50	Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain, 2004, 111, 169-180.	2.0	77
51	Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. International Journal of Cancer, 2003, 104, 550-558.	2.3	107
52	Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs. inflammatory pain. Pain, 2002, 99, 397-406.	2.0	180
53	Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Research, 2002, 62, 7343-9.	0.4	144
54	Neurobiology of substance P and the NK1 receptor. Journal of Clinical Psychiatry, 2002, 63 Suppl 11, 6-10.	1.1	96

PATRICK W MANTYH

#	Article	IF	CITATIONS
55	The molecular dynamics of pain control. Nature Reviews Neuroscience, 2001, 2, 83-91.	4.9	504
56	Bone Cancer Pain: From Mechanism to Model to Therapy. Pain Medicine, 2000, 1, 303-309.	0.9	86
57	Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Medicine, 2000, 6, 521-528.	15.2	467
58	Primary Afferent Fibers That Contribute to Increased Substance P Receptor Internalization in the Spinal Cord After Injury. Journal of Neurophysiology, 1999, 81, 1379-1390.	0.9	83
59	Neurochemical and Cellular Reorganization of the Spinal Cord in a Murine Model of Bone Cancer Pain. Journal of Neuroscience, 1999, 19, 10886-10897.	1.7	471
60	Stereochemical specificity of Alzheimer's disease ?-peptide assembly. Biopolymers, 1999, 49, 505-514.	1.2	47
61	Stereochemical specificity of Alzheimer's disease βâ€peptide assembly. Biopolymers, 1999, 49, 505-514.	1.2	2
62	Primary afferent tachykinins are required to experience moderate to intense pain. Nature, 1998, 392, 390-394.	13.7	560
63	AÎ ² deposition inhibitor screen using synthetic amyloid. Nature Biotechnology, 1997, 15, 258-263.	9.4	80
64	Point Substitution in the Central Hydrophobic Cluster of a Human β-Amyloid Congener Disrupts Peptide Folding and Abolishes Plaque Competenceâ€. Biochemistry, 1996, 35, 13914-13921.	1.2	188
65	Brain Amyloid — A Physicochemical Perspective. Brain Pathology, 1996, 6, 147-162.	2.1	64
66	β-adrenergic receptors regulate astrogliosis and cell proliferation in the central nervous system in vivo. , 1996, 17, 52-62.		57
67	Zincâ€Induced Aggregation of Human and Rat βâ€Amyloid Peptides In Vitro. Journal of Neurochemistry, 1996, 66, 723-732.	2.1	117
68	Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science, 1995, 268, 1629-1632.	6.0	471
69	Cholecystokinin and neuropeptide Y receptors on single rabbit vagal afferent ganglion neurons: site of prejunctional modulation of visceral sensory neurons. Brain Research, 1994, 633, 33-40.	1.1	41
70	Aluminum, Iron, and Zinc Ions Promote Aggregation of Physiological Concentrations of ?-Amyloid Peptide. Journal of Neurochemistry, 1993, 61, 1171-1174.	2.1	469
71	Peripheral patterns of calcitonin-gene-related peptide general somatic sensory innervation: Cutaneous and deep terminations. Journal of Comparative Neurology, 1989, 280, 291-302.	0.9	216