James Watmough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2454817/publications.pdf

Version: 2024-02-01

489802 425179 8,582 34 18 34 citations g-index h-index papers 40 40 40 4697 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficacy of a "stay-at-home―policy on SARS-CoV-2 transmission in Toronto, Canada: a mathematical modelling study. CMAJ Open, 2022, 10, E367-E378.	1.1	11
2	Current Trends in Mathematical Epidemiology. Bulletin of Mathematical Biology, 2019, 81, 4311-4312.	0.9	2
3	Stochastic dispersal increases the rate of upstream spread: A case study with green crabs on the northwest Atlantic coast. PLoS ONE, 2017, 12, e0185671.	1.1	9
4	Transient spatio-temporal dynamics of a diffusive plant–herbivore system with Neumann boundary conditions. Journal of Biological Dynamics, 2016, 10, 477-500.	0.8	2
5	Delay induced stability switch, multitype bistability and chaos in an intraguild predation model. Journal of Mathematical Biology, 2015, 71, 1269-1298.	0.8	57
6	Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences and Engineering, 2015, 12, 699-715.	1.0	5
7	Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model. Journal of Mathematical Biology, 2014, 68, 477-503.	0.8	39
8	Global Stability of a Nonlinear Viral Infection Model with Infinitely Distributed Intracellular Delays and CTL Immune Responses. SIAM Journal on Applied Mathematics, 2013, 73, 1280-1302.	0.8	140
9	Timing and Extent of Drift of Shortnose Sturgeon Larvae in the Saint John River, New Brunswick, Canada. Transactions of the American Fisheries Society, 2013, 142, 717-730.	0.6	12
10	Differentiating between Sampling- and Environment-Related Mortality in Shortnose Sturgeon Larvae Collected Using Anchored D-Frame Nets. North American Journal of Fisheries Management, 2013, 33, 595-605.	0.5	1
11	Age and Population Size Estimates of Overwintering Shortnose Sturgeon in the Saint John River, NewÂBrunswick,ÂCanada. Transactions of the American Fisheries Society, 2012, 141, 1126-1136.	0.6	7
12	Modeling the timing of spawning and hatching of shortnose sturgeon, <i>Acipenser brevirostrum</i> , in the Saint John River, New Brunswick, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1316-1328.	0.7	7
13	Modeling the Effect of Environmental Parameters on Feeding Ecology of the Shortnose Sturgeon in the Saint John River, New Brunswick. Transactions of the American Fisheries Society, 2012, 141, 238-256.	0.6	6
14	Predicting larval dispersal of the vase tunicate Ciona intestinalis in a Prince Edward Island estuary using a matrix population model. Aquatic Invasions, 2011, 6, 491-506.	0.6	16
15	Pandemic influenza: Modelling and public health perspectives. Mathematical Biosciences and Engineering, 2011, 8, 1-20.	1.0	26
16	Evaluating the effectiveness of SCUBA-based visual searches for an invasive tunicate, Ciona intestinalis, in a Prince Edward Island estuary. Aquatic Invasions, 2010, 5, 41-47.	0.6	8
17	Age of infection epidemic models with heterogeneous mixing. Journal of Biological Dynamics, 2009, 3, 324-330.	0.8	20
18	A model for influenza with vaccination and antiviral treatment. Journal of Theoretical Biology, 2008, 253, 118-130.	0.8	112

#	Article	IF	Citations
19	Further Notes on the Basic Reproduction Number. Lecture Notes in Mathematics, 2008, , 159-178.	0.1	211
20	When Eradication is not an Option: Modeling Strategies for Electrofishing Suppression of Nonnative Brook Trout to Foster Persistence of Sympatric Native Cutthroat Trout in Small Streams. North American Journal of Fisheries Management, 2008, 28, 1847-1867.	0.5	36
21	Potato Field Colonization by Low-Density Populations of Colorado Potato Beetle as a Function of Crop Rotation Distance. Journal of Economic Entomology, 2008, 101, 1575-1583.	0.8	14
22	Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Mathematical Biosciences, 2007, 210, 436-463.	0.9	127
23	A final size relation for epidemic models. Mathematical Biosciences and Engineering, 2007, 4, 159-175.	1.0	109
24	Simple models for containment of a pandemic. Journal of the Royal Society Interface, 2006, 3, 453-457.	1.5	140
25	Modelling strategies for controlling SARS outbreaks. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2223-2232.	1.2	304
26	Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 2002, 180, 29-48.	0.9	6,613
27	A simple SIS epidemic model with a backward bifurcation. Journal of Mathematical Biology, 2000, 40, 525-540.	0.8	253
28	Distinguishing the Effects of Dilution and Restricted Movement on the Intra-nest Transmission of Honey-Bee Queen Pheromones. Bulletin of Mathematical Biology, 1998, 60, 307-327.	0.9	2
29	Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. Journal of Mathematical Biology, 1998, 36, 515-549.	0.8	87
30	A General Model of Pheromone Transmission Within Honey Bee Hives. Journal of Theoretical Biology, 1997, 189, 159-170.	0.8	6
31	Modelling the Formation of Trail Networks by Foraging Ants. Journal of Theoretical Biology, 1995, 176, 357-371.	0.8	61
32	Self-Organized Thermoregulation of Honeybee Clusters. Journal of Theoretical Biology, 1995, 176, 391-402.	0.8	48
33	A one-dimensional model of trail propagation by army ants. Journal of Mathematical Biology, 1995, 33, 459-476.	0.8	16
34	Trail following in ants: individual properties determine population behaviour. Behavioral Ecology and Sociobiology, 1995, 36, 119-133.	0.6	56