Antonella Viola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2454752/publications.pdf

Version: 2024-02-01

100 10,551 47 97 g-index

101 101 101 101 13698

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	COVID-19 Vaccination Limits Systemic Danger Signals in SARS-CoV-2 Infected Patients. Viruses, 2022, 14, 565.	1.5	2
2	Targeting monoamine oxidase to dampen NLRP3 inflammasome activation in inflammation. Cellular and Molecular Immunology, 2021, 18, 1311-1313.	4.8	31
3	TGF- \hat{l}^2 in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers, 2021, 13, 401.	1.7	34
4	Extracellular Vesicles Secreted by Mesenchymal Stromal Cells Exert Opposite Effects to Their Cells of Origin in Murine Sodium Dextran Sulfate-Induced Colitis. Frontiers in Immunology, 2021, 12, 627605.	2.2	23
5	Arrhythmogenic Cardiomyopathy Is a Multicellular Disease Affecting Cardiac and Bone Marrow Mesenchymal Stromal Cells. Journal of Clinical Medicine, 2021, 10, 1871.	1.0	10
6	Reactive Oxygen Species in Macrophages: Sources and Targets. Frontiers in Immunology, 2021, 12, 734229.	2.2	134
7	GM-CSF Nitration Is a New Driver of Myeloid Suppressor Cell Activity in Tumors. Frontiers in Immunology, 2021, 12, 718098.	2.2	10
8	The dominant-negative mitochondrial calcium uniporter subunit MCUb drives macrophage polarization during skeletal muscle regeneration. Science Signaling, 2021, 14, eabf3838.	1.6	17
9	IL $1\hat{l}^2$ Promotes TMPRSS2 Expression and SARS-CoV-2 Cell Entry Through the p38 MAPK-GATA2 Axis. Frontiers in Immunology, 2021, 12, 781352.	2.2	18
10	Adipose Mesenchymal Cells-Derived EVs Alleviate DOCA-Salt-Induced Hypertension by Promoting Cardio-Renal Protection. Molecular Therapy - Methods and Clinical Development, 2020, 16, 63-77.	1.8	27
11	Administration of Human MSC-Derived Extracellular Vesicles for the Treatment of Primary Sclerosing Cholangitis: Preclinical Data in MDR2 Knockout Mice. International Journal of Molecular Sciences, 2020, 21, 8874.	1.8	15
12	Safety and efficacy of the Russian COVID-19 vaccine: more information needed. Lancet, The, 2020, 396, e53.	6.3	27
13	The Global Response to the COVID-19 Pandemic. Med, 2020, 1, 3-8.	2.2	11
14	Age-severity matched cytokine profiling reveals specific signatures in Covid-19 patients. Cell Death and Disease, 2020, 11, 957.	2.7	88
15	CD73 ⁺ extracellular vesicles inhibit angiogenesis through adenosine A _{2B} receptor signalling. Journal of Extracellular Vesicles, 2020, 9, 1757900.	5.5	31
16	Pharmacological targets of metabolism in disease: Opportunities from macrophages., 2020, 210, 107521.		45
17	Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metabolism, 2020, 31, 987-1003.e8.	7.2	101
18	Role of Mitochondrial Calcium in the Maintenance of Skeletal Muscle Homeostasis. FASEB Journal, 2020, 34, 1-1.	0.2	0

#	Article	IF	Citations
19	The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 2019, 10, 1462.	2.2	1,083
20	Innate immunity ascertained from blood and tracheal aspirates of preterm newborn provides new clues for assessing bronchopulmonary dysplasia. PLoS ONE, 2019, 14, e0221206.	1.1	9
21	Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis. Cell Reports, 2019, 27, 1-10.e4.	2.9	85
22	The WHIM Syndrome. Rare Diseases of the Immune System, 2019, , 167-177.	0.1	0
23	Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. Journal of Proteomics, 2017, 166, 115-126.	1.2	80
24	Analysis of T Cell Activation by Confocal Microscopy. Methods in Molecular Biology, 2017, 1514, 63-81.	0.4	0
25	CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency. Frontiers in Immunology, 2017, 8, 1068.	2.2	13
26	Membrane Rafts in T Cell Activation: A Spotlight on CD28 Costimulation. Frontiers in Immunology, 2017, 8, 1467.	2.2	31
27	T Cells and Cancer: How Metabolism Shapes Immunity. Frontiers in Immunology, 2016, 7, 20.	2.2	77
28	Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation. Frontiers in Immunology, 2016, 7, 186.	2.2	27
29	CXCR4 signaling in health and disease. Immunology Letters, 2016, 177, 6-15.	1.1	197
30	Phosphatidylinositol 4-Phosphate 5-Kinase \hat{l}^2 Controls Recruitment of Lipid Rafts into the Immunological Synapse. Journal of Immunology, 2016, 196, 1955-1963.	0.4	29
31	Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche. Cell Death and Differentiation, 2016, 23, 1322-1330.	5. O	25
32	Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia, 2016, 30, 1143-1154.	3.3	79
33	Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Frontiers in Immunology, 2015, 6, 433.	2.2	14
34	Phosphatidylinositol 4–Phosphate 5–Kinase α and Vav1 Mutual Cooperation in CD28-Mediated Actin Remodeling and Signaling Functions. Journal of Immunology, 2015, 194, 1323-1333.	0.4	33
35	Mesenchymal stem cells: myths and reality. Swiss Medical Weekly, 2015, 145, w14229.	0.8	14
36	Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells. EMBO Journal, 2014, 33, 1354-1364.	3. 5	50

#	Article	IF	Citations
37	The Kinase PKCα Selectively Upregulates Interleukin-17A during Th17 Cell Immune Responses. Immunity, 2013, 38, 41-52.	6.6	36
38	Encapsulated mesenchymal stem cells for in vivo immunomodulation. Leukemia, 2013, 27, 500-503.	3.3	67
39	Cbl-b mediates $TGF\hat{l}^2$ sensitivity by downregulating inhibitory SMAD7 in primary T cells. Journal of Molecular Cell Biology, 2013, 5, 358-368.	1.5	30
40	Hypoxia-mediated regulation of macrophage functions in pathophysiology. International Immunology, 2013, 25, 67-75.	1.8	69
41	The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse. Blood, 2013, 122, 666-673.	0.6	59
42	Smoothing T cell roads to the tumor. Oncolmmunology, 2012, 1, 390-392.	2.1	6
43	Agrin is required for survival and function of monocytic cells. Blood, 2012, 119, 5502-5511.	0.6	32
44	The pros and cons of chemokines in tumor immunology. Trends in Immunology, 2012, 33, 496-504.	2.9	101
45	Differential involvement of $\hat{l}\pm4\hat{l}^22$, $\hat{l}\pm7$ and $\hat{l}\pm9\hat{l}\pm10$ nicotinic acetylcholine receptors in B lymphocyte activation in vitro. International Journal of Biochemistry and Cell Biology, 2011, 43, 516-524.	1.2	76
46	The critical role of agrin in the hematopoietic stem cell niche. Blood, 2011, 118, 2733-2742.	0.6	47
47	Self-antigen presentation by mouse B cells results in regulatory T-cell induction rather than anergy or clonal deletion. Blood, 2011, 118, 984-991.	0.6	36
48	Modulation of human Tâ€eell functions by reactive nitrogen species. European Journal of Immunology, 2011, 41, 1843-1849.	1.6	54
49	Regulatory T Cells Target Chemokine Secretion by Dendritic Cells Independently of Their Capacity To Regulate T Cell Proliferation. Journal of Immunology, 2011, 186, 6807-6814.	0.4	20
50	Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. Journal of Experimental Medicine, 2011, 208, 1949-1962.	4.2	547
51	Serotonin-Mediated Tuning of Human Helper T Cell Responsiveness to the Chemokine CXCL12. PLoS ONE, 2011, 6, e22482.	1.1	19
52	A novel KIR-associated function: evidence that CpG DNA uptake and shuttling to early endosomes is mediated by KIR3DL2. Blood, 2010, 116, 1637-1647.	0.6	83
53	Constitutively Active Lck Kinase in T Cells Drives Antigen Receptor Signal Transduction. Immunity, 2010, 32, 766-777.	6.6	300
54	Adhesion shapes T cells for prompt and sustained T-cell receptor signalling. EMBO Journal, 2010, 29, 4035-4047.	3.5	55

#	Article	IF	CITATIONS
55	Signaling Amplification at the Immunological Synapse. Current Topics in Microbiology and Immunology, 2010, 340, 109-122.	0.7	20
56	Tunable Chemokine Production by Antigen Presenting Dendritic Cells in Response to Changes in Regulatory T Cell Frequency in Mouse Reactive Lymph Nodes. PLoS ONE, 2009, 4, e7696.	1.1	22
57	Flotillins Are Involved in the Polarization of Primitive and Mature Hematopoietic Cells. PLoS ONE, 2009, 4, e8290.	1.1	42
58	CD4+CD25+ Regulatory T Cells Suppress Mast Cell Degranulation and Allergic Responses through OX40-OX40L Interaction. Immunity, 2008, 29, 771-781.	6.6	333
59	The splice variant LOXIN inhibits LOX-1 receptor function through hetero-oligomerization. Journal of Molecular and Cellular Cardiology, 2008, 44, 561-570.	0.9	66
60	Chemokines and Their Receptors: Drug Targets in Immunity and Inflammation. Annual Review of Pharmacology and Toxicology, 2008, 48, 171-197.	4.2	521
61	CXCR4–CCR5: A couple modulating T cell functions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10101-10106.	3.3	195
62	Chemokines: coded messages for T-cell missions. Frontiers in Bioscience - Landmark, 2008, Volume, 6341.	3.0	26
63	From Tango to Quadrilla. Cell Adhesion and Migration, 2007, 1, 7-12.	1.1	5
64	IFN-Î ³ and R-848 Dependent Activation of Human Monocyte-Derived Dendritic Cells by <i>Neisseria meningitidis</i> Adhesin A. Journal of Immunology, 2007, 179, 3904-3916.	0.4	25
65	Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Developmental Biology, 2007, 302, 670-682.	0.9	54
66	Metabolic mechanisms of cancer-induced inhibition of immune responses. Seminars in Cancer Biology, 2007, 17, 309-316.	4.3	38
67	Filamin-A regulates actin-dependent clustering of HIV receptors. Nature Cell Biology, 2007, 9, 838-846.	4.6	167
68	Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nature Reviews Immunology, 2007, 7, 889-896.	10.6	161
69	From tango to quadrilla: current views of the immunological synapse. Cell Adhesion and Migration, 2007, 1, 7-12.	1.1	3
70	Lipid rafts in lymphocyte activation and migration (Review). Molecular Membrane Biology, 2006, 23, 59-69.	2.0	81
71	T cells and their partners: the chemokine dating agency. Trends in Immunology, 2006, 27, 421-427.	2.9	70
72	CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nature Cell Biology, 2006, 8, 1270-1276.	4.6	133

#	Article	IF	CITATIONS
73	Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. Journal of Experimental Medicine, 2006, 203, 2879-2886.	4.2	296
74	Prostate cancer-induced immunodysfunction: A lesson from organ cultures. Immunology Letters, 2005, 100, 98-102.	1.1	2
75	T cell costimulation by chemokine receptors. Nature Immunology, 2005, 6, 465-471.	7.0	298
76	Lipid-Based Membrane Microdomains in T Cell Activation. Current Immunology Reviews, 2005, 1, 7-12.	1.2	3
77	Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. Journal of Experimental Medicine, 2005, 201, 1257-1268.	4.2	352
78	CD28 and Lipid Rafts Coordinate Recruitment of Lck to the Immunological Synapse of Human T Lymphocytes. Journal of Immunology, 2004, 173, 5392-5397.	0.4	103
79	The raft marker GM1 identifies functional subsets of granular lymphocytes in patients with CD3+ lymphoproliferative disease of granular lymphocytes. Leukemia, 2004, 18, 771-776.	3.3	3
80	The inner side of T cell lipid rafts. Immunology Letters, 2004, 94, 247-252.	1.1	55
81	Lipid rafts in lymphocyte activation. Microbes and Infection, 2004, 6, 686-692.	1.0	34
82	Physiological T cell activation starts and propagates in lipid rafts. Immunology Letters, 2004, 91, 3-9.	1.1	40
83	Lymphocyte lipid rafts: structure and function. Current Opinion in Immunology, 2003, 15, 255-260.	2.4	72
84	TBX1 is required for inner ear morphogenesis. Human Molecular Genetics, 2003, 12, 2041-2048.	1.4	110
85	Vav cooperates with CD28 to induce NF-κB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. European Journal of Immunology, 2002, 32, 447-456.	1.6	75
86	Lipid rafts and T cell receptor signaling: a critical re-evaluation. European Journal of Immunology, 2002, 32, 3082-3091.	1.6	109
87	The amplification of TCR signaling by dynamic membrane microdomains. Trends in Immunology, 2001, 22, 322-327.	2.9	96
88	Antigen recognition by T cells: a strong sense of structure. Trends in Immunology, 2001, 22, 601.	2.9	1
89	Organization of plasma membrane functional rafts upon T cell activation. European Journal of Immunology, 2001, 31, 345-349.	1.6	143
90	Developmental Regulation of Lck Targeting to the CD8 Coreceptor Controls Signaling in Naive and Memory T Cells. Journal of Experimental Medicine, 1999, 189, 1521-1530.	4.2	138

ANTONELLA VIOLA

#	Article	IF	CITATIONS
91	Tâ€cell activation and the dynamic world of rafts:. Apmis, 1999, 107, 615-623.	0.9	36
92	Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. European Journal of Immunology, 1999, 29, 291-299.	1.6	161
93	T Lymphocyte Costimulation Mediated by Reorganization of Membrane Microdomains. Science, 1999, 283, 680-682.	6.0	897
94	From TCR Engagement to T Cell Activation. Cell, 1999, 96, 1-4.	13.5	355
95	Quantitative Contribution of CD4 and CD8 to T Cell Antigen Receptor Serial Triggering. Journal of Experimental Medicine, 1997, 186, 1775-1779.	4.2	87
96	A T cell receptor (TCR) antagonist competitively inhibits serial TCR triggering by low-affinity ligands, but does not affect triggering by high-affinity anti-CD3 antibodies. European Journal of Immunology, 1997, 27, 3080-3083.	1.6	20
97	Effect ofin vitrocadmium exposure on natural killer (NK) cells of catfish,Ictalurus melas. Fish and Shellfish Immunology, 1996, 6, 167-172.	1.6	12
98	T Cell Activation Determined by T Cell Receptor Number and Tunable Thresholds. Science, 1996, 273, 104-106.	6.0	945
99	Effects of cadmium on lymphocyte proliferation and macrophage activation in catfish,Ictalurus melas. Fish and Shellfish Immunology, 1995, 5, 301-311.	1.6	9
100	Effects of cadmium on catfish, Ictalurus melas, humoralimmune response. Fish and Shellfish Immunology, 1995, 5, 89-95.	1.6	14