Jianshen Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2454178/publications.pdf

Version: 2024-02-01

56	5,508	185998	149479
papers	citations	h-index	g-index
56	56	56	9207
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686.	2.2	1,845
2	Facile preparation and upconversion luminescence of graphene quantum dots. Chemical Communications, 2011, 47, 2580-2582.	2.2	734
3	One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New Journal of Chemistry, 2012, 36, 97-101.	1.4	460
4	Enriched graphitic N-doped carbon-supported Fe ₃ O ₄ nanoparticles as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 7281-7287.	5.2	235
5	Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. Journal of Materials Chemistry A, 2014, 2, 9040.	5.2	170
6	Room-Temperature Synthesis of Mn-Doped Cesium Lead Halide Quantum Dots with High Mn Substitution Ratio. Journal of Physical Chemistry Letters, 2017, 8, 4167-4171.	2.1	139
7	CsPbBr ₃ Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium. Journal of Physical Chemistry Letters, 2016, 7, 4253-4258.	2.1	137
8	Tailored graphene-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17278.	6.7	112
9	2D nanosheets-based novel architectures: Synthesis, assembly and applications. Nano Today, 2016, 11, 483-520.	6.2	95
10	A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells. Industrial & Engineering Chemistry Research, 2013, 52, 6076-6082.	1.8	93
11	Multifunctional Fe ₃ O ₄ @Ag/SiO ₂ /Au Core–Shell Microspheres as a Novel SERS-Activity Label via Long-Range Plasmon Coupling. Langmuir, 2013, 29, 690-695.	1.6	92
12	Faceâ€toâ€Face Contact and Openâ€Void Coinvolved Si/C Nanohybrids Lithiumâ€Ion Battery Anodes with Extremely Long Cycle Life. Advanced Functional Materials, 2015, 25, 5395-5401.	7.8	85
13	Sprayâ€Assisted Coil–Globule Transition for Scalable Preparation of Waterâ€Resistant CsPbBr ₃ @PMMA Perovskite Nanospheres with Application in Live Cell Imaging. Small, 2018, 14, e1803156.	5.2	85
14	Multimetallic Ni–Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. Journal of Materials Chemistry A, 2017, 5, 4207-4214.	5. 2	83
15	Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. Journal of Materials Chemistry C, 2017, 5, 8714-8722.	2.7	63
16	In Situ Loading of Cu ₂ O Active Sites on Island-like Copper for Efficient Electrochemical Reduction of Nitrate to Ammonia. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6680-6688.	4.0	62
17	Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12074.	5.2	59
18	Plasmon-enhanced efficient dye-sensitized solar cells using core–shell-structured β-NaYF ₄ :Yb,Er@SiO ₂ @Au nanocomposites. Journal of Materials Chemistry A, 2014, 2, 16523-16530.	5.2	57

#	Article	IF	Citations
19	Highly stable CsPbBr ₃ @SiO ₂ nanocomposites prepared <i>via</i> confined condensation for use as a luminescent ink. Chemical Communications, 2018, 54, 8064-8067.	2.2	53
20	Porous CoS nanosheets coated by N and S doped carbon shell on graphene foams for free-standing and flexible lithium ion battery anodes: Influence of void spaces, shell and porous nanosheet. Electrochimica Acta, 2018, 271, 242-251.	2.6	48
21	Gold-coated silica-fiber hybrid materials for application in a novel hydrogen peroxide biosensor. Biosensors and Bioelectronics, 2012, 34, 132-136.	5.3	47
22	Magnetic composite microspheres with exposed {001} faceted TiO2 shells: a highly active and selective visible-light photocatalyst. Journal of Materials Chemistry, 2012, 22, 13341.	6.7	46
23	Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres. Journal of Materials Chemistry, 2012, 22, 545-550.	6.7	45
24	Preparation of CsPbBr ₃ @PS composite microspheres with high stability by electrospraying. Journal of Materials Chemistry C, 2018, 6, 7971-7975.	2.7	45
25	Photoluminescent carbon–nitrogen quantum dots as efficient electrocatalysts for oxygen reduction. Nanoscale, 2015, 7, 2003-2008.	2.8	41
26	Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New Journal of Chemistry, 2012, 36, 1051.	1.4	37
27	A polymer-coated template-confinement CsPbBr ₃ perovskite quantum dot composite. Nanoscale, 2021, 13, 6586-6591.	2.8	34
28	Multifunctional gadolinium-labeled silica-coated Fe ₃ O ₄ and CulnS ₂ nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. Journal of Materials Chemistry B, 2015, 3, 2873-2882.	2.9	32
29	Halide Ion Intercalated Electrodeposition Synthesis of Co ₃ O ₄ Nanosheets with Tunable Pores on Graphene Foams as Free-Standing and Flexible Li-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1239-1251.	2.5	31
30	Synthesis of monodisperse water-stable surface Pb-rich CsPbCl ₃ nanocrystals for efficient photocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 11842-11846.	2.8	29
31	Multifunctional gadolinium-labeled silica-coated core/shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. RSC Advances, 2014, 4, 20641-20648.	1.7	27
32	Synthesis of CsPbBr ₃ perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl)triethoxysilane. Journal of Materials Chemistry C, 2019, 7, 7201-7206.	2.7	27
33	Nitrogen-doped Fe ₃ C@C particles as an efficient heterogeneous photo-assisted Fenton catalyst. RSC Advances, 2017, 7, 15168-15175.	1.7	26
34	CoO nanosheets derived from electrodeposited cobalt metal towards high performance lithium ion batteries. Electrochimica Acta, 2016, 222, 1300-1307.	2.6	25
35	Effective Singlet Oxygen Generation in Silicaâ€Coated CsPbBr ₃ Quantum Dots through Energy Transfer for Photocatalysis. ChemSusChem, 2020, 13, 682-687.	3.6	24
36	Gold/mesoporous silica-fiber core-shell hybrid nanostructure: a potential electron transfer mediator in a bio-electrochemical system. New Journal of Chemistry, 2010, 34, 2166.	1.4	23

#	Article	IF	CITATIONS
37	Facile synthesis of upconversion luminescent mesoporous Y2O3:Er microspheres and metal enhancement using gold nanoparticles. RSC Advances, 2012, 2, 10592.	1.7	23
38	Layered Confinement Reaction: Atomicâ€level Dispersed Iron–Nitrogen Coâ€Doped Ultrathin Carbon Nanosheets for CO ₂ Electroreduction. ChemSusChem, 2019, 12, 2644-2650.	3.6	23
39	Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites. Journal of Materials Chemistry C, 2020, 8, 1413-1420.	2.7	23
40	Multifunctional manganese-doped core–shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. New Journal of Chemistry, 2013, 37, 3076.	1.4	22
41	Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules. Applied Surface Science, 2021, 545, 149012.	3.1	22
42	CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy. Nano Research, 2021, 14, 4038-4045.	5.8	20
43	The Effect of the Coordination Environment of Atomically Dispersed Fe and N Coâ€doped Carbon Nanosheets on CO 2 Electroreduction. ChemElectroChem, 2020, 7, 4767-4772.	1.7	17
44	Efficient electrocatalytic formic acid oxidation over PdAu-manganese oxide/carbon. Journal of Colloid and Interface Science, 2021, 593, 244-250.	5.0	15
45	Stable Bismuthâ€Doped Lead Halide Perovskite Coreâ€Shell Nanocrystals by Surface Segregation Effect. Small, 2022, 18, e2104399.	5.2	12
46	Identifying Activity Trends for the Electrochemical Production of H ₂ O ₂ on M–N–C Single-Atom Catalysts Using Theoretical Kinetic Computations. Journal of Physical Chemistry C, 2022, 126, 10388-10398.	1.5	12
47	Preparation of Coâ€"N carbon nanosheet oxygen electrode catalyst by controlled crystallization of cobalt salt precursors for all-solid-state Alâ€"air battery. RSC Advances, 2018, 8, 22193-22198.	1.7	11
48	Synthesis of Gramâ€Scale Ultrastable Mnâ€Doped 2D Perovskites for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2002175.	1.9	10
49	Polyacrylic acid- <i>b</i> -polystyrene-passivated CsPbBr ₃ perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes. Chemical Communications, 2022, 58, 4235-4238.	2.2	10
50	Flexible Free-Standing Hierarchical Carbon-Coated CoP ₂ Nanosheets for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 7253-7262.	2.5	9
51	Solid State Melting Confinement Reaction Synthesis of CsPbBr ₃ Quantum Dots Embedded in Mesoporous SiO ₂ Microspheres for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2022, 9, .	1.9	9
52	Carbon-loaded ultrafine fully crystalline phase palladium-based nanoalloy PdCoNi/C: facile synthesis and high activity for formic acid oxidation. Nanoscale, 2019, 11, 17334-17339.	2.8	7
53	Plasmonic Au Decorated Singleâ€crystalâ€like <scp>TiO₂â€NaYF₄</scp> Mesoporous Microspheres for Enhanced Broadband Photocatalysis. Chinese Journal of Chemistry, 2017, 35, 949-956.	2.6	5
54	The Proportion of Feâ€N X , N Doping Species and Fe 3 C to Oxygen Catalytic Activity in Coreâ€Shell Feâ€N/C Electrocatalyst. Chemistry - an Asian Journal, 2020, 15, 310-318.	1.7	4

#	Article	lF	CITATIONS
55	Electrophoreticâ€Driven In Situ Polymerization Depositing Highâ€Quality Perovskite Films for Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	4
56	Highly stable halide perovskites for photocatalysis <i>via</i> multi-dimensional structure design and <i>in situ</i> phase transition. Dalton Transactions, 2022, 51, 11316-11324.	1.6	4