List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2453691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Mechanisms and Regulation of Opioid Receptor Signaling. Annual Review of Pharmacology and Toxicology, 2000, 40, 389-430.	9.4	588
2	Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cellular Signalling, 2002, 14, 249-257.	3.6	133
3	Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1937-1942.	7.1	98
4	Gz signaling: emerging divergence from Gi signaling. Oncogene, 2001, 20, 1615-1625.	5.9	76
5	Differential Coupling of μâ€, δâ€, and ΰâ€Opioid Receptors to Cα ₁₆ â€Mediated Stimulation of Phospholipase C. Journal of Neurochemistry, 1998, 70, 2203-2211.	3.9	75
6	Preactivation Permits Subsequent Stimulation of Phospholipase C by Gi-Coupled Receptors. Molecular Pharmacology, 2000, 57, 700-708.	2.3	60
7	Gα14 links a variety of Gi - and Gs -coupled receptors to the stimulation of phospholipase C. British Journal of Pharmacology, 2001, 132, 1431-1440.	5.4	59
8	Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiology of Disease, 2015, 73, 366-376.	4.4	46
9	Pertussis Toxinâ€Insensitive Signaling of the ORL ₁ Receptor: Coupling to G _z and G ₁₆ Proteins. Journal of Neurochemistry, 1998, 71, 2203-2210.	3.9	45
10	Differential chemokine activation of CC chemokine receptor 1-regulated pathways: ligand selective activation of Gα 14-coupled pathways. European Journal of Immunology, 2004, 34, 785-795.	2.9	41
11	The Calcitonin Gene-Related Peptide-Induced Acetylcholinesterase Synthesis in Cultured Chick Myotubes Is Mediated by Cyclic AMP. Journal of Neurochemistry, 2002, 71, 152-160.	3.9	40
12	Role of G Protein-Coupled Receptors in the Regulation of Structural Plasticity and Cognitive Function. Molecules, 2017, 22, 1239.	3.8	40
13	Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cellular Signalling, 2016, 28, 1663-1672.	3.6	35
14	Regulation of Adenylyl Cyclase, ERK1/2, and CREB by Gz Following Acute and Chronic Activation of the δ-Opioid Receptor. Journal of Neurochemistry, 2002, 74, 1685-1693.	3.9	32
15	Activation of muscarinic M4 receptor augments NGF-induced pro-survival Akt signaling in PC12 cells. Cellular Signalling, 2006, 18, 285-293.	3.6	30
16	CCR1-Mediated STAT3 Tyrosine Phosphorylation and CXCL8 Expression in THP-1 Macrophage-like Cells Involve Pertussis Toxin-Insensitive Gα14/16 Signaling and IL-6 Release. Journal of Immunology, 2012, 189, 5266-5276.	0.8	30
17	Integration of G protein signals by extracellular signal-regulated protein kinases in SK-N-MC neuroepithelioma cells. Journal of Neurochemistry, 2005, 94, 1457-1470.	3.9	29
18	A Molecular and Chemical Perspective in Defining Melatonin Receptor Subtype Selectivity. International Journal of Molecular Sciences, 2013, 14, 18385-18406.	4.1	29

#	Article	lF	CITATIONS
19	BML-190 and AM251 act as inverse agonists at the human cannabinoid CB2 receptor: signalling via cAMP and inositol phosphates. FEBS Letters, 2003, 536, 157-160.	2.8	28
20	Gβ3 forms distinct dimers with specific Gγ subunits and preferentially activates the β3 isoform of phospholipase C. Cellular Signalling, 2009, 21, 737-744.	3.6	27
21	Age Associated Decrease of MT-1 Melatonin Receptor in Human Dermal Skin Fibroblasts Impairs Protection Against UV-Induced DNA Damage. International Journal of Molecular Sciences, 2020, 21, 326.	4.1	27
22	Formyl peptide receptor like 1 differentially requires mitogen-activated protein kinases for the induction of glial fibrillary acidic protein and interleukin-11± in human U87 astrocytoma cells. Cellular Signalling, 2007, 19, 2106-2117.	3.6	26
23	Dopaminergic and adrenergic toxicities on SK-N-MC human neuroblastoma cells are mediated through G protein signaling and oxidative stress. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 167-179.	4.9	26
24	Prostacyclin receptor-independent inhibition of phospholipase C activity by non-prostanoid prostacyclin mimetics. British Journal of Pharmacology, 2001, 134, 1375-1384.	5.4	25
25	Activation of STAT3 by specific Cα subunits and multiple Cβγ dimers. International Journal of Biochemistry and Cell Biology, 2010, 42, 1052-1059.	2.8	25
26	RGS19 inhibits Ras signaling through Nm23H1/2-mediated phosphorylation of the kinase suppressor of Ras. Cellular Signalling, 2013, 25, 1064-1074.	3.6	24
27	Regulator of G protein signaling 19 suppresses Ras-induced neoplastic transformation and tumorigenesis. Cancer Letters, 2013, 339, 33-41.	7.2	23
28	CTCF and EGR1 suppress breast cancer cell migration through transcriptional control of Nm23-H1. Scientific Reports, 2021, 11, 491.	3.3	22
29	Regulation of calcium influx and phospholipase C activity by indoleamines in dinoflagellate Crypthecodiniurn cohnii. Journal of Pineal Research, 1998, 24, 152-161.	7.4	21
30	Opioid-induced adenylyl cyclase supersensitization in human embryonic kidney 293 cells requires pertussis toxin-sensitive G proteins other than Gi1 and Gi3. Neuroscience Letters, 2001, 299, 25-28.	2.1	21
31	The RhoA-specific guanine nucleotide exchange factor p63RhoGEF binds to activated Cα16 and inhibits the canonical phospholipase Cβ pathway. Cellular Signalling, 2009, 21, 1317-1325.	3.6	21
32	Metastasis suppressors Nm23H1 and Nm23H2 differentially regulate neoplastic transformation and tumorigenesis. Cancer Letters, 2015, 361, 207-217.	7.2	21
33	GPCRs in Autocrine and Paracrine Regulations. Frontiers in Endocrinology, 2019, 10, 428.	3.5	21
34	Replacement of the α5 helix of Gα16 with Gαs-specific sequences enhances promiscuity of Gα16 toward Gs-coupled receptors. Cellular Signalling, 2004, 16, 51-62.	3.6	17
35	G _q -Mediated Activation of c-Jun N-Terminal Kinase by the Gastrin-Releasing Peptide-Preferring Bombesin Receptor Is Inhibited upon Costimulation of the G _s -Coupled Dopamine D ₁ Receptor in COS-7 Cells. Molecular Pharmacology, 2005, 68, 1354-1364.	2.3	17
36	CCR1-mediated activation of nuclear factor-κB in THP-1 monocytic cells involves <i>pertussis</i> toxin-insensitive Gα14 and Gα16 signaling cascades. Journal of Leukocyte Biology, 2009, 86, 1319-1329.	3.3	16

#	Article	IF	CITATIONS
37	Gα16 activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS). Cellular Signalling, 2010, 22, 1448-1458.	3.6	16
38	RGS19 upregulates Nm23-H1/2 metastasis suppressors by transcriptional activation via the cAMP/PKA/CREB pathway. Oncotarget, 2017, 8, 69945-69960.	1.8	16
39	G protein signaling controls the differentiation of multiple cell lineages. BioFactors, 2009, 35, 232-238.	5.4	15
40	Regulatory functions of Nm23-H2 in tumorigenesis: insights from biochemical to clinical perspectives. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 243-256.	3.0	15
41	Role of extracellular signal-regulated kinases in opioid-induced adenylyl cyclase superactivation in human embryonic kidney 293 cells. Neuroscience Letters, 2001, 316, 13-16.	2.1	14
42	Stimulation of phospholipase C by the cloned μ, δand κ opioid receptors via chimeric Gαqmutants. European Journal of Neuroscience, 1999, 11, 383-388.	2.6	13
43	Activation of δ-, κ-, and μ-opioid receptors induces phosphorylation of tuberin in transfected HEK 293 cells and native cells. Biochemical and Biophysical Research Communications, 2005, 334, 838-844.	2.1	13
44	Activation of rasâ€dependent signaling pathways by G ₁₄ oupled receptors requires the adaptor protein TPR1. Journal of Cellular Biochemistry, 2012, 113, 3486-3497.	2.6	13
45	ADP-Ribosylation with Pertussis Toxin Modulates the GTP-Sensitive Opioid Ligand Binding in Digitonin-Soluble Extracts of Rat Brain Membranes. Journal of Neurochemistry, 1988, 51, 114-121.	3.9	12
46	Chimeric Gαqmutants harboring the last five carboxy-terminal residues of Gαi2or Gαoare resistant to pertussis toxin-catalyzed ADP-ribosylation. FEBS Letters, 1998, 441, 67-70.	2.8	12
47	Multiple Gi Proteins Participate in Nerve Growth Factor-Induced Activation of c-Jun N-terminal Kinases in PC12 Cells. Neurochemical Research, 2009, 34, 1101-1112.	3.3	12
48	Chimeric Galphaq subunits can distinguish the long form of the Xenopus Mel1c melatonin receptor from the mammalian mt1 and MT2 melatonin receptors. Journal of Pineal Research, 2001, 30, 171-179.	7.4	11
49	Functional Role of Amino-Terminal Serine16 and Serine27 of Cαz in Receptor and Effector Coupling. Journal of Neurochemistry, 2002, 68, 2514-2522.	3.9	11
50	Epidermal growth factor differentially augments Gi -mediated stimulation of c-Jun N-terminal kinase activity. British Journal of Pharmacology, 2004, 142, 635-646.	5.4	11
51	Gβγ-mediated activation of protein kinase D exhibits subunit specificity and requires Gβγ-responsive phospholipase Cβ isoforms. Cell Communication and Signaling, 2013, 11, 22.	6.5	11
52	3-Methoxylphenylpropyl amides as novel receptor subtype-selective melatoninergic ligands: characterization of physicochemical and pharmacokinetic properties. Xenobiotica, 2011, 41, 35-45.	1.1	10
53	Angiotensin-[1-12] interacts with angiotensin type I receptors. Neuropharmacology, 2014, 81, 267-273.	4.1	10
54	CKBM stimulates MAPKs but inhibits LPS-induced IFN-γ in lymphocytes. Phytotherapy Research, 2006, 20, 725-731.	5.8	9

#	Article	IF	CITATIONS
55	Transcriptional activation of c-Fos by constitutively active Gα16QL through a STAT1-dependent pathway. Cellular Signalling, 2006, 18, 2143-2153.	3.6	9
56	Prostacyclin receptor-induced STAT3 phosphorylation in human erythroleukemia cells is mediated via Gαs and Gα16 hybrid signaling. Cellular Signalling, 2008, 20, 2095-2106.	3.6	9
57	Reâ€examining the â€~Dissociation Model' of G protein activation from the perspective of Gβγ signaling. FE Journal, 2021, 288, 2490-2501.	BS _{4.7}	9
58	Activation of the Human FPRL-1 Receptor Promotes Ca2+ Mobilization in U87 Astrocytoma Cells. Neurochemical Research, 2008, 33, 125-133.	3.3	7
59	Mutations on the Switch III region and the alpha3 helix of Galpha ₁₆ differentially affect receptor coupling and regulation of downstream effectors. Journal of Molecular Signaling, 2008, 3, 17.	0.5	7
60	Regulation of mTOR and p70 S6 kinase by the muscarinic M4 receptor in PC12 cells. Cell Biology International, 2009, 33, 230-238.	3.0	7
61	Neuronal Functions of Activators of G Protein Signaling. NeuroSignals, 2013, 21, 259-271.	0.9	7
62	Molecular basis defining the selectivity of substituted isoquinolinones for the melatonin MT2 receptor. Biochemical Pharmacology, 2020, 177, 114020.	4.4	7
63	Small Molecules as Drugs to Upregulate Metastasis Suppressors in Cancer Cells. Current Medicinal Chemistry, 2019, 26, 5876-5899.	2.4	7
64	The β6/α5 regions of Cαi2 and CαoA increase the promiscuity of Cα16 but are insufficient for pertussis toxin-catalyzed ADP-ribosylation. European Journal of Pharmacology, 2003, 473, 105-115.	3.5	5
65	Elevated expression of RGS19 impairs the responsiveness of stress-activated protein kinases to serum. Molecular and Cellular Biochemistry, 2012, 362, 159-168.	3.1	5
66	Differential Regulation of CXCL8 Production by Different G Protein Subunits with Synergistic Stimulation by G i - and G q -Regulated Pathways. Journal of Molecular Biology, 2016, 428, 3869-3884.	4.2	5
67	Pharmacokinetics, oral bioavailability and metabolism of a novel isoquinolinone-based melatonin receptor agonist in rats. Xenobiotica, 2012, 42, 1138-1150.	1.1	4
68	Synthesis and Functional Characterization of Substituted Isoquinolinones as MT2-Selective Melatoninergic Ligands. PLoS ONE, 2014, 9, e113638.	2.5	4
69	Activation of $\hat{Gl_{\pm}q}$ subunits up-regulates the expression of the tumor suppressor Fhit. Cellular Signalling, 2013, 25, 2440-2452.	3.6	3
70	An intact helical domain is required for Gα14 to stimulate phospholipase Cβ. BMC Structural Biology, 2015, 15, 18.	2.3	3
71	AGS3 and Gαi3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules, 2020, 25, 5169.	3.8	3
72	Association of activated Gαq to the tumor suppressor Fhit is enhanced by phospholipase Cβ. BMC Cancer, 2015, 15, 775.	2.6	2

#	Article	IF	CITATIONS
73	Modeling the Heterodimer Interfaces of Melatonin Receptors. Frontiers in Cellular Neuroscience, 2021, 15, 725296.	3.7	2
74	Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gαi3. Molecular and Cellular Biochemistry, 2015, 401, 27-38.	3.1	1
75	Mutations at the dimer interface and surface residues of Nm23-H1 metastasis suppressor affect its expression and function. Molecular and Cellular Biochemistry, 2020, 474, 95-112.	3.1	1