
Xiaotao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2453344/publications.pdf Version: 2024-02-01

Χιλότλο Ζηλνίς

#	Article	IF	CITATIONS
1	Organic Semiconductor Single Crystals for Electronics and Photonics. Advanced Materials, 2018, 30, e1801048.	11.1	319
2	Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2019, 48, 1492-1530.	18.7	314
3	2D Organic Materials for Optoelectronic Applications. Advanced Materials, 2018, 30, 1702415.	11.1	266
4	Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging. Angewandte Chemie - International Edition, 2018, 57, 3963-3967.	7.2	255
5	Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chemical Society Reviews, 2020, 49, 653-670.	18.7	246
6	Cocrystal Engineering: A Collaborative Strategy toward Functional Materials. Advanced Materials, 2019, 31, e1902328.	11.1	245
7	Aromatic Extension at 2,6-Positions of Anthracene toward an Elegant Strategy for Organic Semiconductors with Efficient Charge Transport and Strong Solid State Emission. Journal of the American Chemical Society, 2017, 139, 17261-17264.	6.6	158
8	Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016, 4, 2269-2273.	2.7	155
9	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie - International Edition, 2017, 56, 7831-7835.	7.2	146
10	Nâ€Type 2D Organic Single Crystals for Highâ€Performance Organic Fieldâ€Effect Transistors and Nearâ€Infrared Phototransistors. Advanced Materials, 2018, 30, e1706260.	11.1	145
11	Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Physical Chemistry Chemical Physics, 2018, 20, 6009-6023.	1.3	143
12	Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Science Bulletin, 2019, 64, 1573-1576.	4.3	140
13	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie - International Edition, 2018, 57, 5708-5713.	7.2	137
14	Space-Confined Strategy toward Large-Area Two-Dimensional Single Crystals of Molecular Materials. Journal of the American Chemical Society, 2018, 140, 5339-5342.	6.6	132
15	The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic Transistor for Highly Sensitive Pressure Sensors. Advanced Materials, 2019, 31, e1805630.	11.1	115
16	Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nature Chemistry, 2019, 11, 271-277.	6.6	115
17	Tuning the Crystal Polymorphs of Alkyl Thienoacene via Solution Selfâ€Assembly Toward Airâ€Stable and Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 825-830.	11.1	106
18	Solutionâ€Processed Centimeterâ€5cale Highly Aligned Organic Crystalline Arrays for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2020, 32, e1908388.	11.1	99

#	Article	IF	CITATIONS
19	Efficient Perovskite Solar Cells Fabricated by Co Partially Substituted Hybrid Perovskite. Advanced Energy Materials, 2018, 8, 1703178.	10.2	98
20	Highâ€Efficiency Singleâ€Component Organic Lightâ€Emitting Transistors. Advanced Materials, 2019, 31, e1903175.	11.1	98
21	Organic Fieldâ€Effect Transistor for Energyâ€Related Applications: Lowâ€Powerâ€Consumption Devices, Nearâ€Infrared Phototransistors, and Organic Thermoelectric Devices. Advanced Energy Materials, 2018, 8, 1801003.	10.2	95
22	Scalable Fabrication of Highly Crystalline Organic Semiconductor Thin Film by Channelâ€Restricted Screen Printing toward the Low ost Fabrication of Highâ€Performance Transistor Arrays. Advanced Materials, 2019, 31, e1807975.	11.1	93
23	Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. Journal of the American Chemical Society, 2020, 142, 6332-6339.	6.6	90
24	Gibbs–Curie–Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth. Advanced Materials, 2016, 28, 1697-1702.	11.1	88
25	Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. Journal of the American Chemical Society, 2021, 143, 19243-19256.	6.6	84
26	Organic–Inorganic Hybrid Nanomaterials for Electrocatalytic CO ₂ Reduction. Small, 2020, 16, e2001847.	5.2	79
27	Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet Energy Gap via Charge Transfer. Angewandte Chemie - International Edition, 2019, 58, 11311-11316.	7.2	76
28	Verticalâ€organicâ€nanocrystalâ€arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat, 2021, 2, 99-108.	6.4	73
29	Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Materials Chemistry Frontiers, 2020, 4, 715-728.	3.2	72
30	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	7.8	69
31	Bimetal–organic frameworks for functionality optimization: MnFe-MOF-74 as a stable and efficient catalyst for the epoxidation of alkenes with H ₂ O ₂ . Nanoscale, 2018, 10, 1591-1597.	2.8	68
32	Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry. Advanced Materials, 2017, 29, 1605053.	11.1	64
33	Challenges and Emerging Opportunities in Highâ€Mobility and Lowâ€Energy onsumption Organic Fieldâ€Effect Transistors. Advanced Energy Materials, 2020, 10, 2000955.	10.2	63
34	2D Mica Crystal as Electret in Organic Field ffect Transistors for Multistate Memory. Advanced Materials, 2016, 28, 3755-3760.	11.1	62
35	Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane. Chemical Communications, 2013, 49, 1199.	2.2	59
36	Co-crystal engineering: a novel method to obtain one-dimensional (1D) carbon nanocrystals of corannulene–fullerene by a solution process. Nanoscale, 2016, 8, 14920-14924.	2.8	55

#	Article	IF	CITATIONS
37	Substitution effect on molecular packing and transistor performance of indolo[3,2-b]carbazole derivatives. Journal of Materials Chemistry, 2012, 22, 4409-4417.	6.7	54
38	Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit. Angewandte Chemie - International Edition, 2019, 58, 16082-16086.	7.2	53
39	Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors. ACS Central Science, 2020, 6, 636-652.	5.3	53
40	Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current Chemistry, 2016, 374, 83.	3.0	52
41	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. Journal of Materials Chemistry C, 2017, 5, 566-572.	2.7	51
42	Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope. ACS Applied Materials & Interfaces, 2018, 10, 25871-25877.	4.0	50
43	Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging. Angewandte Chemie, 2018, 130, 4027-4031.	1.6	50
44	Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half‧election Problem. Advanced Materials, 2017, 29, 1701907.	11.1	46
45	A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D Molecular Crystals. Advanced Materials, 2019, 31, e1901437.	11.1	44
46	Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for Broadband Photodetection. Angewandte Chemie - International Edition, 2021, 60, 6344-6350.	7.2	43
47	Organic Cocrystal Photovoltaic Behavior: A Model System to Study Charge Recombination of C ₆₀ and C ₇₀ at the Molecular Level. Advanced Electronic Materials, 2016, 2, 1500423.	2.6	42
48	Construction of Largeâ€Area Ultrathin Conductive Metal–Organic Framework Films through Vaporâ€Induced Conversion. Small, 2019, 15, e1804845.	5.2	42
49	Impact of C–H···X (X = F, N) and π–π Interactions on Tuning the Degree of Charge Transfer in F ₆ TNAP-Based Organic Binary Compound Single Crystals. Crystal Growth and Design, 2018, 18, 1776-1785.	1.4	40
50	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie, 2018, 130, 5810-5815.	1.6	38
51	A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties. Journal of Materials Chemistry C, 2015, 3, 3068-3071.	2.7	35
52	Inverse Magnetoresistance in Polymer Spin Valves. ACS Applied Materials & Interfaces, 2017, 9, 15644-15651.	4.0	35
53	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	1.9	34
54	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie, 2017, 129, 7939-7943.	1.6	32

#	Article	IF	CITATIONS
55	Free‧tanding 2D Hexagonal Aluminum Nitride Dielectric Crystals for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1801891.	11.1	32
56	Highâ€Performance UVâ€Sensitive Organic Phototransistors Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b′</i>]dithiophene Dimers Linked with Unsaturated Bonds. Advanced Electronic Materials, 2015, 1, 1500071.	2.6	31
57	A bowl-shaped sumanene derivative with dense convex–concave columnar packing for high-performance organic field-effect transistors. Chemical Communications, 2017, 53, 11407-11409.	2.2	31
58	Photoluminescence spectral broadening, chirality transfer and amplification of chiral perovskite materials (R-X- <i>p</i> -mBZA) ₂ PbBr ₄ (X = H, F, Cl, Br) regulated by van der Waals and halogen atoms interactions. Physical Chemistry Chemical Physics, 2020, 22, 17299-17305.	1.3	31
59	2D Molecular Crystal Bilayer p–n Junctions: A General Route toward Highâ€Performance and Wellâ€Balanced Ambipolar Organic Fieldâ€Effect Transistors. Small, 2019, 15, e1902187.	5.2	29
60	Revealing molecular conformation–induced stress at embedded interfaces of organic optoelectronic devices by sum frequency generation spectroscopy. Science Advances, 2021, 7, .	4.7	29
61	An Asymmetric Furan/Thieno[3,2â€ <i>b</i>]Thiophene Diketopyrrolopyrrole Building Block for Annealingâ€Free Greenâ€6olvent Processable Organic Thinâ€Film Transistors. Macromolecular Rapid Communications, 2018, 39, e1800225.	2.0	28
62	A new organic compound of 2-(2,2-diphenylethenyl)anthracene (DPEA) showing simultaneous electrical charge transport property and AIE optical characteristics. Journal of Materials Chemistry C, 2018, 6, 3856-3860.	2.7	27
63	Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Research, 2020, 13, 1976-1981.	5.8	27
64	Recent Advances in Growth of Largeâ€6ized 2D Single Crystals on Cu Substrates. Advanced Materials, 2021, 33, e2003956.	11.1	26
65	Negative Phototransistors with Ultrahigh Sensitivity and Weakâ€Light Detection Based on 1D/2D Molecular Crystal p–n Heterojunctions and their Application in Light Encoders. Advanced Materials, 2022, 34, e2201364.	11.1	26
66	Molecular cocrystal odyssey to unconventional electronics and photonics. Science Bulletin, 2021, 66, 512-520.	4.3	25
67	Enhancing field-effect mobility and maintaining solid-state emission by incorporating 2,6-diphenyl substitution to 9,10-bis(phenylethynyl)anthracene. Journal of Materials Chemistry C, 2017, 5, 2519-2523.	2.7	24
68	Conjugated polymers with deep LUMO levels for field-effect transistors and polymer–polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 8255-8261.	2.7	23
69	Rubrene analogues with the aggregation-induced emission enhancement behaviour. Journal of Materials Chemistry C, 2014, 2, 884-890.	2.7	22
70	A case study of tuning the crystal polymorphs of organic semiconductors towards simultaneously improved light emission and field-effect properties. Journal of Materials Chemistry C, 2019, 7, 5925-5930.	2.7	22
71	Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory. Advanced Materials, 2016, 28, 8227-8233.	11.1	20
72	Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. Chinese Chemical Letters, 2021, 32, 3007-3010.	4.8	20

#	Article	IF	CITATIONS
73	Poly(pentacyclic lactam-alt-diketopyrrolopyrrole) for field-effect transistors and polymer solar cells processed from non-chlorinated solvents. Polymer Chemistry, 2016, 7, 164-170.	1.9	18
74	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & Interfaces, 2019, 11, 40163-40171.	4.0	17
75	Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal–Organic Framework-Based Composite Films. Journal of the American Chemical Society, 2021, 143, 17526-17534.	6.6	17
76	High-performance optical memory transistors based on a novel organic semiconductor with nanosprouts. Nanoscale, 2019, 11, 7117-7122.	2.8	16
77	A New Biscarbazoleâ€Based Metal–Organic Framework for Efficient Host–Guest Energy Transfer. Chemistry - A European Journal, 2019, 25, 1901-1905.	1.7	16
78	Unidirectional and crystalline organic semiconductor microwire arrays by solvent vapor annealing with PMMA as the assisting layer. Journal of Materials Chemistry C, 2018, 6, 12479-12483.	2.7	15
79	Thermal-assisted self-assembly: a self-adaptive strategy towards large-area uniaxial organic single-crystalline microribbon arrays. Nanoscale, 2019, 11, 12781-12787.	2.8	15
80	Cocrystal engineering for constructing two-photon absorption materials by controllable intermolecular interactions. Journal of Materials Chemistry C, 2022, 10, 2562-2568.	2.7	15
81	The position effect of an ethynyl spacer on the carrier mobility of anthracene derivatives. Journal of Materials Chemistry C, 2015, 3, 5368-5371.	2.7	14
82	Research progress of rubrene as an excellent multifunctional organic semiconductor. Frontiers of Physics, 2021, 16, 1.	2.4	14
83	Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale, 2021, 13, 12720-12726.	2.8	14
84	The prospects of organic semiconductor single crystals for spintronic applications. Journal of Materials Chemistry C, 2022, 10, 2507-2515.	2.7	14
85	Organic Cocrystals: Recent Advances and Perspectives for Electronic and Magnetic Applications. Frontiers in Chemistry, 2021, 9, 764628.	1.8	14
86	Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet Energy Gap via Charge Transfer. Angewandte Chemie, 2019, 131, 11433.	1.6	13
87	Polymer Electrolyte Dielectrics Enable Efficient Exciton-Polaron Quenching in Organic Semiconductors for Photostable Organic Transistors. ACS Applied Materials & Interfaces, 2022, 14, 13584-13592.	4.0	13
88	A new asymmetric anthracene derivative with high mobility. Science China Chemistry, 2019, 62, 251-255.	4.2	12
89	2D molecular crystal templated organic p–n heterojunctions for high-performance ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5758-5764.	2.7	12
90	Dual-function surfactant strategy for two-dimensional organic semiconductor crystals towards high-performance organic field-effect transistors. Science China Chemistry, 2021, 64, 1057-1062.	4.2	12

#	Article	IF	CITATIONS
91	Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Research, 2022, 15, 2667-2673.	5.8	12
92	Lead-free perovskites: growth, properties, and applications. Science China Materials, 2021, 64, 2889-2914.	3.5	12
93	Synthesis and aggregation-induced emissions of thienyl substituted cyclobutene derivatives. Journal of Materials Chemistry C, 2014, 2, 5083-5086.	2.7	11
94	Assembly of π onjugated Nanosystems for Electronic Sensing Devices. Advanced Electronic Materials, 2017, 3, 1700209.	2.6	11
95	Organic Optoelectronics: 2D Organic Materials for Optoelectronic Applications (Adv. Mater. 2/2018). Advanced Materials, 2018, 30, 1870012.	11.1	11
96	Two-dimensional organic single-crystalline p-n junctions for ambipolar field transistors. Science China Materials, 2020, 63, 122-127.	3.5	11
97	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. Chemical Communications, 2021, 57, 2669-2672.	2.2	11
98	Integrating Unexpected High Chargeâ€Carrier Mobility and Lowâ€Threshold Lasing Action in an Organic Semiconductor. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
99	A thienyl peripherally substituted rubrene analogue with constant emissions and good film forming ability. Journal of Materials Chemistry C, 2014, 2, 8222-8225.	2.7	10
100	Continuous and highly ordered organic semiconductor thin films via dip-coating: the critical role of meniscus angle. Science China Materials, 2020, 63, 1257-1264.	3.5	10
101	Cocrystal engineering: Tuning the charge transfer excitons for highly sensitive luminescent switching materials under multiple stimuli. Science China Materials, 2022, 65, 1320-1328.	3.5	10
102	New anthracene derivatives integrating high mobility and strong emission. Journal of Materials Chemistry C, 2018, 6, 13257-13260.	2.7	9
103	Two-dimensional conjugated polymers synthesized via on-surface chemistry. Science China Materials, 2020, 63, 172-176.	3.5	9
104	Solution-processed crystalline organic integrated circuits. Matter, 2021, 4, 3415-3443.	5.0	9
105	High-mobility thienothiophene integrating strong emission and high photoresponsivity for multifunctional optoelectronic applications. Organic Electronics, 2020, 87, 105941.	1.4	8
106	A general route towards two-dimensional organic crystal-based functional fibriform transistors for wearable electronic textiles. Journal of Materials Chemistry C, 2021, 9, 472-480.	2.7	8
107	A Ligandâ€free Copperâ€promoted Dimerization of Perylene Bisimide by Aromatic CC Homocoupling and CH Activation. Asian Journal of Organic Chemistry, 2013, 2, 558-560.	1.3	6
108	Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit. Angewandte Chemie, 2019, 131, 16228-16232.	1.6	6

#	Article	IF	CITATIONS
109	Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility. Science China Materials, 2019, 62, 813-822.	3.5	6
110	The effect of electron-withdrawing substituents in asymmetric anthracene derivative semiconductors. Journal of Materials Chemistry C, 2021, 9, 4217-4222.	2.7	6
111	Low-power high-mobility organic single-crystal field-effect transistor. Science China Materials, 2022, 65, 2779-2785.	3.5	6
112	Random Access Memory: Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half‧election Problem (Adv. Mater. 34/2017). Advanced Materials, 2017, 29, .	11.1	5
113	Organic Single Crystals: N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect Transistors and Near-Infrared Phototransistors (Adv. Mater. 16/2018). Advanced Materials, 2018, 30, 1870114.	11.1	5
114	Diphenyleneâ€Tetracyanoquinodimethane Cocrystals as Stable Organic Rectifiers. ChemPlusChem, 2019, 84, 1245-1248.	1.3	5
115	Phenanthrene derivatives combined charge transport properties and strong solid-state emission. Science China Chemistry, 2019, 62, 916-920.	4.2	5
116	Eu-based coordination polymer microrods for low-loss optical waveguiding application. Nanoscale, 2019, 11, 21061-21067.	2.8	5
117	Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for Broadband Photodetection. Angewandte Chemie, 2021, 133, 6414-6420.	1.6	5
118	Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano Research, 2022, 15, 3647-3652.	5.8	5
119	Highly Efficient Contact Doping for High-Performance Organic UV-Sensitive Phototransistors. Crystals, 2022, 12, 651.	1.0	5
120	TCNQ-based organic cocrystal integrated red emission and n-type charge transport. Frontiers of Optoelectronics, 2022, 15, .	1.9	5
121	A new pseudo rubrene analogue with excellent film forming ability. Science China Chemistry, 2011, 54, 631-635.	4.2	4
122	Enhanced stability of a rubrene analogue with a brickwork packing motif. Journal of Materials Chemistry C, 2017, 5, 8376-8379.	2.7	4
123	An organic cocrystal based on phthalocyanine with ideal packing mode towards high-performance ambipolar property. Journal of Materials Chemistry C, 2022, 10, 9596-9601.	2.7	4
124	Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals. Science China Chemistry, 2020, 63, 973-979.	4.2	3
125	Growing two-dimensional single crystals of organic semiconductors on liquid surfaces. Applied Physics Letters, 2021, 119, .	1.5	3
126	Organic Memory Devices: 2D Mica Crystal as Electret in Organic Fieldâ€Effect Transistors for Multistate Memory (Adv. Mater. 19/2016). Advanced Materials, 2016, 28, 3792-3792.	11.1	2

#	Article	IF	CITATIONS
127	Organic Single Crystals: A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D Molecular Crystals (Adv. Mater. 35/2019). Advanced Materials, 2019, 31, 1970251.	11.1	2
128	Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation. Chemical Research in Chinese Universities, 2020, 36, 110-114.	1.3	2
129	Organic Fieldâ€Effect Transistors: Challenges and Emerging Opportunities in Highâ€Mobility and Lowâ€Energyâ€Consumption Organic Fieldâ€Effect Transistors (Adv. Energy Mater. 29/2020). Advanced Energy Materials, 2020, 10, 2070126.	10.2	2
130	Mixed Solvent as a Critical Factor in Optimizing Phase Separation of All Small Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 11769-11776.	2.5	2
131	Fieldâ€Effect Devices: Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry (Adv. Mater. 10/2017). Advanced Materials, 2017, 29, .	11.1	1
132	Integrating Unexpected High Chargeâ€Carrier Mobility and Lowâ€Threshold Lasing Action in an Organic Semiconductor. Angewandte Chemie, 2022, 134, .	1.6	1
133	Sensors: Assembly of π onjugated Nanosystems for Electronic Sensing Devices (Adv. Electron. Mater.) Tj ETQv	q1_1_0.784 2.6	1314 rgBT (
134	Organic Lightâ€Emitting Transistors: Highâ€Efficiency Singleâ€Component Organic Lightâ€Emitting Transistors (Adv. Mater. 37/2019). Advanced Materials, 2019, 31, 1970266.	11.1	0
135	Innenrücktitelbild: Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit (Angew. Chem. 45/2019). Angewandte Chemie, 2019, 131, 16479-16479.	1.6	0
136	Tailoring the substituted position for high-efficiency charge transport ability and strong blue solid-state emission in a naphthalene derivative. Materials Chemistry Frontiers, 0, , .	3.2	0