Daniela Nicastro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2453201/publications.pdf

Version: 2024-02-01

76294 76872 7,451 75 40 74 citations h-index g-index papers 92 92 92 6857 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electron microscopy for imaging organelles in plants and algae. Plant Physiology, 2022, 188, 713-725.	2.3	17
2	3D structure and in situ arrangements of CatSper channel in the sperm flagellum. Nature Communications, 2022, 13 , .	5.8	21
3	Functional refolding of the penetration protein on a non-enveloped virus. Nature, 2021, 590, 666-670.	13.7	33
4	Structural organization of the intermediate and light chain complex of <i>Chlamydomonas</i> ciliary I1 dynein. FASEB Journal, 2021, 35, e21646.	0.2	5
5	Structural insights into the cause of human <i>RSPH4A</i> primary ciliary dyskinesia. Molecular Biology of the Cell, 2021, 32, 1202-1209.	0.9	12
6	Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null <i>Tetrahymena</i> cells reveals functional MIPs. Molecular Biology of the Cell, 2021, 32, br8.	0.9	13
7	Structural organization of the C1b projection within the ciliary central apparatus. Journal of Cell Science, 2021, 134, .	1.2	3
8	In situ structure determination at nanometer resolution using TYGRESS. Nature Methods, 2020, 17, 201-208.	9.0	59
9	Complexity and ultrastructure of infectious extracellular vesicles from cells infected by non-enveloped virus. Scientific Reports, 2020, 10, 7939.	1.6	26
10	Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO Journal, 2020, 39, e102723.	3.5	22
11	<i>Chlamydomonas</i> PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. Journal of Cell Biology, 2020, 219, .	2.3	40
12	Scaffold subunits support associated subunit assembly in the ⟨i⟩Chlamydomonas⟨/i⟩ ciliary nexin–dynein regulatory complex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23152-23162.	3.3	40
13	FAP57/WDR65 targets assembly of a subset of inner arm dyneins and connects to regulatory hubs in cilia. Molecular Biology of the Cell, 2019, 30, 2659-2680.	0.9	32
14	Morphological Plasticity in a Sulfur-Oxidizing Marine Bacterium from the SUP05 Clade Enhances Dark Carbon Fixation. MBio, 2019, 10, .	1.8	24
15	PACRG and FAP20 form the inner junction of axonemal doublet microtubules and regulate ciliary motility. Molecular Biology of the Cell, 2019, 30, 1805-1816.	0.9	43
16	Heterotrophic carbon metabolism and energy acquisition in <i>Candidatus</i> Thioglobus singularis strain PS1, a member of the SUP05 clade of marine <i>Gammaproteobacteria</i> Environmental Microbiology, 2019, 21, 2391-2401.	1.8	30
17	Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. Journal of Cell Biology, 2019, 218, 1319-1334.	2.3	97
18	Structural organization of the C1a-e-c supercomplex within the ciliary central apparatus. Journal of Cell Biology, 2019, 218, 4236-4251.	2.3	38

#	Article	IF	Citations
19	Ionotropic Receptors Specify the Morphogenesis of Phasic Sensors Controlling Rapid Thermal Preference in Drosophila. Neuron, 2019, 101, 738-747.e3.	3.8	90
20	Membrane bridging by Munc13-1 is crucial for neurotransmitter release. ELife, 2019, 8, .	2.8	84
21	The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Molecular Biology of the Cell, 2018, 29, 886-896.	0.9	37
22	The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Molecular Biology of the Cell, 2018, 29, 1048-1059.	0.9	53
23	Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis. Molecular Therapy, 2018, 26, 648-658.	3.7	20
24	Ciliary proteins Fap43 and Fap44 interact with each other and are essential for proper cilia and flagella beating. Cellular and Molecular Life Sciences, 2018, 75, 4479-4493.	2.4	46
25	Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science, 2018, 360, .	6.0	198
26	DRC2/CCDC65 is a central hub for assembly of the nexin–dynein regulatory complex and other regulators of ciliary and flagellar motility. Molecular Biology of the Cell, 2018, 29, 137-153.	0.9	43
27	<i>Tetrahymena</i> RIB72A and RIB72B are microtubule inner proteins in the ciliary doublet microtubules. Molecular Biology of the Cell, 2018, 29, 2566-2577.	0.9	47
28	Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium "Candidatus Pelagibacter ubique― Applied and Environmental Microbiology, 2017, 83, .	1.4	47
29	Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans. ELife, 2017, 6, .	2.8	50
30	Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells. CheM, 2016, 1, 246-263.	5.8	143
31	The nexin link and Bâ€tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme. Cytoskeleton, 2016, 73, 331-340.	1.0	24
32	Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and Autoregulation. Cell Reports, 2015, 13, 2597-2609.	2.9	35
33	The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. Molecular Biology of the Cell, 2015, 26, 1463-1475.	0.9	58
34	ATP Consumption of Eukaryotic Flagella Measured at a Single-Cell Level. Biophysical Journal, 2015, 109, 2562-2573.	0.2	72
35	In Situ Localization of N and C Termini of Subunits of the Flagellar Nexin-Dynein Regulatory Complex (N-DRC) Using SNAP Tag and Cryo-electron Tomography. Journal of Biological Chemistry, 2015, 290, 5341-5353.	1.6	51
36	FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c. Molecular Biology of the Cell, 2015, 26, 696-710.	0.9	28

#	Article	IF	Citations
37	DRC3 connects the N-DRC to dynein g to regulate flagellar waveform. Molecular Biology of the Cell, 2015, 26, 2788-2800.	0.9	48
38	Assembly of actin filaments and microtubules in Nwk F-BAR-induced membrane deformations. Communicative and Integrative Biology, 2015, 8, e1000703.	0.6	7
39	Analyzing Macromolecular Complexes in Situ Using Cellular Cryoâ€Electron Microscopy. FASEB Journal, 2015, 29, 488.3.	0.2	0
40	Structural Correlates of Rotavirus Cell Entry. PLoS Pathogens, 2014, 10, e1004355.	2.1	55
41	Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nature Communications, 2014, 5, 5727.	5.8	135
42	Supramolecular Self-Assembly Inside Living Mammalian Cells. Materials Research Society Symposia Proceedings, 2014, 1622, 85-93.	0.1	0
43	Critical roles for multiple formins during cardiac myofibril development and repair. Molecular Biology of the Cell, 2014, 25, 811-827.	0.9	48
44	Insights into the Structure and Function of Ciliary and Flagellar Doublet Microtubules. Journal of Biological Chemistry, 2014, 289, 17427-17444.	1.6	75
45	Structural mechanism of the dynein power stroke. Nature Cell Biology, 2014, 16, 479-485.	4.6	130
46	Membrane deformation and scission by the HSV-1 nuclear egress complex. Nature Communications, 2014, 5, 4131.	5.8	131
47	Robust excitons inhabit soft supramolecular nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3367-75.	3.3	100
48	A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. ELife, 2014, 3, e01948.	2.8	155
49	Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton, 2013, 70, 101-120.	1.0	91
50	Probing Nanoscale Self-Assembly of Nonfluorescent Small Molecules inside Live Mammalian Cells. ACS Nano, 2013, 7, 9055-9063.	7.3	69
51	The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. Journal of Cell Biology, 2013, 201, 263-278.	2.3	78
52	Formation of membrane ridges and scallops by the F-BAR protein Nervous Wreck. Molecular Biology of the Cell, 2013, 24, 2406-2418.	0.9	39
53	Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in <i>Chlamydomonas</i> flagella. Molecular Biology of the Cell, 2012, 23, 111-120.	0.9	85
54	One of the Nine Doublet Microtubules of Eukaryotic Flagella Exhibits Unique and Partially Conserved Structures. PLoS ONE, 2012, 7, e46494.	1.1	48

#	Article	IF	CITATIONS
55	Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2067-76.	3.3	84
56	The CSC connects three major axonemal complexes involved in dynein regulation. Molecular Biology of the Cell, 2012, 23, 3143-3155.	0.9	78
57	The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskeleton, 2012, 69, 88-100.	1.0	67
58	Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nature Communications, 2011, 2, 359.	5.8	125
59	Cilia-Like Beating of Active Microtubule Bundles. Science, 2011, 333, 456-459.	6.0	240
60	The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Molecular Biology of the Cell, 2011, 22, 2520-2531.	0.9	77
61	Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E845-53.	3.3	131
62	Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella. Journal of Biological Chemistry, 2011, 286, 29175-29191.	1.6	91
63	Arrangement of Photosystem II and ATP Synthase in Chloroplast Membranes of Spinach and Pea Â. Plant Cell, 2010, 22, 1299-1312.	3.1	237
64	Cryo-Electron Microscope Tomography to Study Axonemal Organization. Methods in Cell Biology, 2009, 91, 1-39.	0.5	46
65	The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. Journal of Cell Biology, 2009, 187, 921-933.	2.3	311
66	Drosophila <i>asterless</i> and Vertebrate Cep152 Are Orthologs Essential for Centriole Duplication. Genetics, 2008, 180, 2081-2094.	1.2	147
67	Electron Microscopy of Microtubuleâ€Based Cytoskeletal Machinery. Methods in Cell Biology, 2007, 79, 437-462.	0.5	8
68	Single particle cryoelectron tomography characterization of the structure and structural variability of poliovirus–receptor–membrane complex at 30 Ņ resolution. Journal of Structural Biology, 2007, 160, 200-210.	1.3	32
69	Cryoâ€fluorescence microscopy facilitates correlations between light and cryoâ€electron microscopy and reduces the rate of photobleaching. Journal of Microscopy, 2007, 227, 98-109.	0.8	203
70	The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography. Science, 2006, 313, 944-948.	6.0	831
71	New views of cells in 3D: an introduction to electron tomography. Trends in Cell Biology, 2005, 15, 43-51.	3.6	378
72	3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15889-15894.	3.3	156

#	Article	IF	CITATIONS
73	Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14153-14158.	3.3	246
74	Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science, 2002, 298, 1209-1213.	6.0	782
75	Cryo-electron Tomography of Neurospora Mitochondria. Journal of Structural Biology, 2000, 129, 48-56.	1.3	179