Rongzhi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2453060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and characterization of <i>Bph14</i> , a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22163-22168.	7.1	437
2	Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect Nilaparvata lugens. PLoS ONE, 2011, 6, e20504.	2.5	290
3	Herbivore-Induced Callose Deposition on the Sieve Plates of Rice: An Important Mechanism for Host Resistance Â. Plant Physiology, 2008, 146, 1810-1820.	4.8	266
4	Rice UDP-Glucose Pyrophosphorylase1 Is Essential for Pollen Callose Deposition and Its Cosuppression Results in a New Type of Thermosensitive Genic Male Sterility. Plant Cell, 2007, 19, 847-861.	6.6	219
5	Allelic diversity in an NLR gene <i>BPH9</i> enables rice to combat planthopper variation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12850-12855.	7.1	196
6	Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nature Genetics, 2018, 50, 297-306.	21.4	158
7	Understanding rice plant resistance to the Brown Planthopper (<i>Nilaparvata lugens</i>): A proteomic approach. Proteomics, 2009, 9, 2798-2808.	2.2	145
8	A rice lectin receptorâ€like kinase that is involved in innate immune responses also contributes to seed germination. Plant Journal, 2013, 76, 687-698.	5.7	127
9	A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. Planta, 2011, 233, 309-323.	3.2	123
10	A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants. Plant Physiology, 2018, 176, 552-565.	4.8	120
11	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.	4.9	107
12	Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proceedings of the United States of America, 2019, 116, 23390-23397.	7.1	98
13	The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice. Plant Cell, 2017, 29, 3157-3185.	6.6	92
14	Responses of Two Contrasting Genotypes of Rice to Brown Planthopper. Molecular Plant-Microbe Interactions, 2008, 21, 122-132.	2.6	82
15	Genomics of interaction between the brown planthopper and rice. Current Opinion in Insect Science, 2017, 19, 82-87.	4.4	74
16	Current understanding of the genomic, genetic, and molecular control of insect resistance in rice. Molecular Breeding, 2020, 40, 1.	2.1	68
17	Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1720-1725.	7.1	67
18	lsolation and Characterization of Triacontanol-Regulated Genes in Rice (Oryza sativa L.): Possible Role of Triacontanol as a Plant Growth Stimulator. Plant and Cell Physiology, 2002, 43, 869-876.	3.1	55

Rongzhi Chen

#	Article	IF	CITATIONS
19	Knockdown of <scp><i>GDCH</i></scp> gene reveals reactive oxygen speciesâ€induced leaf senescence in rice. Plant, Cell and Environment, 2013, 36, 1476-1489.	5.7	52
20	Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths. Molecular Plant, 2021, 14, 1714-1732.	8.3	48
21	Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regulation, 2003, 40, 249-256.	3.4	36
22	High-resolution mapping of a gene conferring strong antibiosis to brown planthopper and developing resistant near-isogenic lines in 9311 background. Molecular Breeding, 2018, 38, 1.	2.1	36
23	Marker assisted pyramiding of Bph6 and Bph9 into elite restorer line 93–11 and development of functional marker for Bph9. Rice, 2017, 10, 51.	4.0	33
24	Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice. Journal of Plant Physiology, 2015, 183, 13-22.	3.5	32
25	A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. BMC Genomics, 2020, 21, 144.	2.8	27
26	Multiple isoforms of UDP-glucose pyrophosphorylase in rice. Physiologia Plantarum, 2007, 129, 725-736.	5.2	26
27	Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling. BMC Genomics, 2014, 15, 1114.	2.8	21
28	Balancing selection and wild gene pool contribute to resistance in global rice germplasm against planthopper. Journal of Integrative Plant Biology, 2021, 63, 1695-1711.	8.5	21
29	Lipid profiles reveal different responses to brown planthopper infestation for pest susceptible and resistant rice plants. Metabolomics, 2018, 14, 120.	3.0	19
30	Salivary Protein 1 of Brown Planthopper Is Required for Survival and Induces Immunity Response in Plants. Frontiers in Plant Science, 2020, 11, 571280.	3.6	19
31	OsEXO70H3 regulating SAMSL excretion and lignin deposition in cell walls is required for rice resistance to planthoppers. New Phytologist, 2022, , .	7.3	15
32	Combining next-generation sequencing and single-molecule sequencing to explore brown plant hopper responses to contrasting genotypes of japonica rice. BMC Genomics, 2019, 20, 682.	2.8	14
33	Overexpression of OsRRK1 Changes Leaf Morphology and Defense to Insect in Rice. Frontiers in Plant Science, 2017, 8, 1783.	3.6	12
34	Lipidomic analyses reveal enhanced lipolysis in planthoppers feeding on resistant host plants. Science China Life Sciences, 2021, 64, 1502-1521.	4.9	12
35	Molecular and functional analysis of a brown planthopper resistance protein with two nucleotide-binding site domains. Journal of Experimental Botany, 2021, 72, 2657-2671.	4.8	9
36	Molecular Mapping of a New Brown Planthopper Resistance Gene Bph43 in Rice (Oryza sativa L.). Agronomy, 2022, 12, 808.	3.0	9

Rongzhi Chen

#	Article	IF	CITATIONS
37	Insect Resistance. , 2013, , 177-192.		6
38	Temperature-sensitive splicing is an important molecular regulation mechanism of thermosensitive genic male sterility in rice. Science Bulletin, 2009, 54, 2354-2362.	1.7	5
39	Bulked Segregant RNA Sequencing Revealed Difference Between Virulent and Avirulent Brown Planthoppers. Frontiers in Plant Science, 2022, 13, 843227.	3.6	2