List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2452535/publications.pdf Version: 2024-02-01

Νιινο Βλεάμο

#	Article	IF	CITATIONS
1	Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chemical Reviews, 2022, 122, 1416-1481.	47.7	95
2	A New Insight into the Degradation of Anthocyanins: Reversible versus the Irreversible Chemical Processes. Journal of Agricultural and Food Chemistry, 2022, 70, 656-668.	5.2	15
3	A Photoswitchable Chalcone-Carbohydrate Conjugate Obtained by CuAAC Click Reaction. Compounds, 2022, 2, 111-120.	1.9	2
4	Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics, 2022, 14, 60.	4.5	5
5	Intermolecular Copigmentation of Malvidin-3- <i>O</i> -glucoside with Caffeine in Water: The Effect of the Copigment on the pH-Dependent Reversible and Irreversible Processes. ACS Omega, 2022, 7, 25502-25509.	3.5	2
6	On the Limits of Anthocyanins Co-Pigmentation Models and Respective Equations. Journal of Agricultural and Food Chemistry, 2021, 69, 1359-1367.	5.2	10
7	Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us. International Journal of Molecular Sciences, 2021, 22, 3833.	4.1	15
8	Photoresponsive Binding Dynamics in Highâ€Affinity Cucurbit[8]urilâ€Dithienylethene Hostâ€Guest Complexes. Chemistry - A European Journal, 2021, 27, 9550-9555.	3.3	11
9	Toward Light-Controlled Supramolecular Peptide Dimerization. Journal of Organic Chemistry, 2021, 86, 8472-8478.	3.2	4
10	Exploring the pH-dependent kinetics, thermodynamics and photochemistry of a flavylium-based pseudorotaxane. Pure and Applied Chemistry, 2021, .	1.9	2
11	Copigmentation of anthocyanins with copigments possessing an acid-base equilibrium in moderately acidic solutions. Dyes and Pigments, 2021, 193, 109438.	3.7	9
12	Anthocyanin Color Stabilization by Host-Guest Complexation with p-Sulfonatocalix[n]arenes. Molecules, 2021, 26, 5389.	3.8	5
13	Strategies used by nature to fix the red, purple and blue colours in plants: a physical chemistry approach. Physical Chemistry Chemical Physics, 2021, 23, 24080-24101.	2.8	6
14	Selective Recognition of Amino Acids and Peptides by Small Supramolecular Receptors. Molecules, 2021, 26, 106.	3.8	22
15	Achieving Complexity at the Bottom: Molecular Metamorphosis Generated by Anthocyanins and Related Compounds. ACS Omega, 2021, 6, 30172-30188.	3.5	4
16	Light―and pHâ€regulated Waterâ€soluble Pseudorotaxanes Comprising a Cucurbit[7]uril and a Flavyliumâ€based Axle. Chemistry - A European Journal, 2021, 27, 16512-16522.	3.3	6
17	Counterion effect on sulfonatocalix[n]arene recognition. Pure and Applied Chemistry, 2020, 92, 25-37.	1.9	6
18	A pseudorotaxane formed from a cucurbit[7]uril wheel and a bioinspired molecular axle with pH, light and redox-responsive properties. Pure and Applied Chemistry, 2020, 92, 301-313.	1.9	10

#	Article	IF	CITATIONS
19	Color stabilization of cyanidin-3-glucoside-based dyes by encapsulation with biocompatible PEGylated phospholipid micelles. Dyes and Pigments, 2020, 181, 108592.	3.7	9
20	Chemical signal cascading in a supramolecular network. Chemical Communications, 2020, 56, 3737-3740.	4.1	14
21	The peculiarity of malvidin 3-O-(6-O-p-coumaroyl) glucoside aggregation. Intra and intermolecular interactions. Dyes and Pigments, 2020, 180, 108382.	3.7	8
22	Correction to "New Procedure to Calculate All Equilibrium Constants in Flavylium Compounds: Application to the Copigmentation of Anthocyanins― ACS Omega, 2020, 5, 25476-25476.	3.5	0
23	Binding of Flavylium Ions to Sulfonatocalix[4]arene and Implication in the Photorelease of Biologically Relevant Guests in Water. Journal of Organic Chemistry, 2019, 84, 10852-10859.	3.2	30
24	New Procedure To Calculate All Equilibrium Constants in Flavylium Compounds: Application to the Copigmentation of Anthocyanins. ACS Omega, 2019, 4, 12058-12070.	3.5	34
25	Impact of a Waterâ€Soluble Gallic Acidâ€Based Dendrimer on the Colorâ€Stabilizing Mechanisms of Anthocyanins. Chemistry - A European Journal, 2019, 25, 11696-11706.	3.3	16
26	Supramolecular surfactants derived from calixarenes. Current Opinion in Colloid and Interface Science, 2019, 44, 225-237.	7.4	17
27	Sulfonatocalixarene Counterion Exchange Binding Model in Action: Metalâ€lon Catalysis Through Hostâ€Guest Complexation. ChemCatChem, 2019, 11, 5397-5404.	3.7	5
28	A Visible–Nearâ€Infrared Lightâ€Responsive Host–Guest Pair with Nanomolar Affinity in Water. Chemistry - A European Journal, 2019, 25, 3477-3482.	3.3	33
29	Ground and excited state properties of furanoflavylium derivatives. Physical Chemistry Chemical Physics, 2019, 21, 21651-21662.	2.8	7
30	Frontispiece: A Visible–Nearâ€Infrared Lightâ€Responsive Host–Guest Pair with Nanomolar Affinity in Water. Chemistry - A European Journal, 2019, 25, .	3.3	0
31	Light-driven control of the composition of a supramolecular network. Chemical Communications, 2019, 55, 4335-4338.	4.1	22
32	Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chemistry, 2019, 288, 386-394.	8.2	33
33	Unveiling the formation 1 : 2 supramolecular complexes between cucurbit[7]uril and a cationic calix[4]arene derivative. Chemical Communications, 2019, 55, 13828-13831.	4.1	8
34	Chapter 4. Rotaxanes and Polyrotaxanes. RSC Smart Materials, 2019, , 56-94.	0.1	2
35	Rationalizing the Color in Heavenly Blue Anthocyanin: A Complete Kinetic and Thermodynamic Study. Journal of Physical Chemistry B, 2018, 122, 4982-4992.	2.6	24
36	pH-Gated photoresponsive shuttling in a water-soluble pseudorotaxane. Chemical Communications, 2018, 54, 2743-2746.	4.1	25

#	Article	IF	CITATIONS
37	Colour modulation of blue anthocyanin-derivatives. Lignosulfonates as a tool to improve the water solubility of natural blue dyes. Dyes and Pigments, 2018, 153, 150-159.	3.7	10
38	Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dyes and Pigments, 2018, 151, 321-326.	3.7	20
39	Terpenes Show Nanomolar Affinity and Selective Binding with Cucurbit[8]uril. Israel Journal of Chemistry, 2018, 58, 487-492.	2.3	7
40	Light-induced cargo release from a cucurbit[8]uril host by means of a sequential logic operation. Chemical Communications, 2018, 54, 13335-13338.	4.1	29
41	On the multistate of 2â€2-hydroxyflavylium-flavanone system. Illustrating the concept of a timer with reset at the molecular level. Dyes and Pigments, 2018, 158, 465-473.	3.7	7
42	Nitric oxide release from a cucurbituril encapsulated NO-donor. Organic and Biomolecular Chemistry, 2018, 16, 4272-4278.	2.8	4
43	Impact of Lignosulfonates on the Thermodynamic and Kinetic Parameters of Malvidin-3- <i>O</i> -glucoside in Aqueous Solutions. Journal of Agricultural and Food Chemistry, 2018, 66, 6382-6387.	5.2	11
44	Contrasting p <i>K</i> _a Shifts in Cucurbit[7]uril Host–Guest Complexes Governed by an Interplay of Hydrophobic Effects and Electrostatic Interactions. ACS Omega, 2017, 2, 70-75.	3.5	36
45	Effect of β-Cyclodextrin on the Multistate Species Distribution of 3-Methoxy-4′,7-dihydroxyflavylium. Discrimination of the Two Hemiketal Enantiomers. Journal of Agricultural and Food Chemistry, 2017, 65, 6346-6358.	5.2	5
46	Binding of the five multistate species of the anthocyanin analog 7-β-D-glucopyranosyloxy-4′-hydroxyflavylium to the β-cyclodextrin derivative captisol. Dyes and Pigments, 2017, 143, 479-487.	3.7	8
47	Exploring the diethylaminoflavylium derivatives multistate system of chemical reactions in the presence of CTAB micelles: thermodynamic reversibility achieved through different kinetic pathways. RSC Advances, 2017, 7, 30469-30480.	3.6	5
48	pH-Driven self-sorting in a four component host–guest system. Chemical Communications, 2017, 53, 6472-6475.	4.1	13
49	A journey from calix[4]arene to calix[6] and calix[8]arene reveals more than a matter of size. Receptor concentration affects the stability and stoichiometric nature of the complexes. Physical Chemistry Chemical Physics, 2017, 19, 13640-13649.	2.8	19
50	Photoswitchable vesicles. Current Opinion in Colloid and Interface Science, 2017, 32, 29-38.	7.4	17
51	p-Sulfonatocalix[6]arene-dodecyltrimethylammonium Supramolecular Amphiphilic System: Relationship between Calixarene and Micelle Concentration. Langmuir, 2017, 33, 13008-13013.	3.5	11
52	Unveiling the 6,8â€Rearrangement in 8â€Phenylâ€5,7â€dihydroxyflavylium and 8â€Methylâ€5,7â€dihydroxyflavy through Host–Guest Complexation. European Journal of Organic Chemistry, 2017, 2017, 5617-5626.	/lium 2.4	11
53	Photocaged Competitor Guests: A General Approach Toward Lightâ€Activated Cargo Release From Cucurbiturils. Chemistry - A European Journal, 2017, 23, 13105-13111.	3.3	31
54	Hiding and unveiling trans-chalcone in a constrained derivative of 4′,7-dihydroxyflavylium in water: a versatile photochromic system. Organic and Biomolecular Chemistry, 2017, 15, 338-347.	2.8	5

#	Article	IF	CITATIONS
55	Analogs of Natural 3-Deoxyanthocyanins: O-Glucosides of the 4′,7-Dihydroxyflavylium Ion and the Deep Influence of Glycosidation on Color. International Journal of Molecular Sciences, 2016, 17, 1751.	4.1	6
56	Chemistry and Photochemistry of Anthocyanins and Related Compounds: A Thermodynamic and Kinetic Approach. Molecules, 2016, 21, 1502.	3.8	52
57	Competitive counterion complexation allows the true host : guest binding constants from a single titration by ionic receptors. Organic and Biomolecular Chemistry, 2016, 14, 6442-6448.	2.8	10
58	Effect of Methyl, Hydroxyl, and Chloro Substituents in Position 3 of 3′,4′,7â€Trihydroxyflavylium: Stability, Kinetics, and Thermodynamics. Chemistry - A European Journal, 2016, 22, 12495-12505.	3.3	9
59	Evidence against the Twisted Intramolecular Charge Transfer (TICT) model in 7-aminoflavylium derivatives. Dyes and Pigments, 2016, 135, 86-93.	3.7	8
60	Drug Delivery by Controlling a Supramolecular Host–Guest Assembly with a Reversible Photoswitch. Chemistry - A European Journal, 2016, 22, 15208-15211.	3.3	57
61	A Multistate Molecular Switch Based on the 6,8-Rearrangement in Bromo-apigeninidin Operated with pH and Host–Guest Inputs. Journal of Physical Chemistry B, 2016, 120, 7053-7061.	2.6	17
62	Synthesis and multistate characterization of bis-flavylium dications – symmetric resorcinol- and phloroglucinol-type derivatives as stochastic systems. RSC Advances, 2016, 6, 69698-69707.	3.6	4
63	Counterion ontrolled Self‧orting in an Amphiphilic Calixarene Micellar System. Chemistry - A European Journal, 2016, 22, 6466-6470.	3.3	19
64	Extending the Study of the 6,8 Rearrangement in Flavylium Compounds to Higher pH Values: Interconversion between 6-Bromo and 8-Bromo-apigeninidin. ChemistryOpen, 2016, 5, 236-246.	1.9	8
65	Host–Guest Complexes of Flavylium Cations and Cucurbit[7]uril: The Influence of Flavylium Substituents on the Structure and Stability of the Complex. ChemPlusChem, 2015, 80, 1779-1785.	2.8	25
66	Light activated molecular machines and logic gates: general discussion. Faraday Discussions, 2015, 185, 399-411.	3.2	1
67	Î ³ -Cyclodextrin modulates the chemical reactivity by multiple complexation. Organic and Biomolecular Chemistry, 2015, 13, 1213-1224.	2.8	3
68	Characterization of Kinetic and Thermodynamic Parameters of Cyanidin-3-glucoside Methyl and Glucuronyl Metabolite Conjugates Journal of Physical Chemistry B, 2015, 119, 2010-2018.	2.6	14
69	Spatiotemporal control over the co-conformational switching in pH-responsive flavylium-based multistate pseudorotaxanes. Faraday Discussions, 2015, 185, 361-379.	3.2	10
70	Mimicking Positive and Negative Copigmentation Effects in Anthocyanin Analogues by Host–Guest Interaction with Cucurbit[7]uril and β-Cyclodextrins. Journal of Agricultural and Food Chemistry, 2015, 63, 7624-7629.	5.2	17
71	Flavylium based dual photochromism: addressing cis–trans isomerization and ring opening-closure by different light inputs. Chemical Communications, 2015, 51, 7349-7351.	4.1	16
72	Exploring the charged nature of supramolecular micelles based on p-sulfonatocalix[6]arene and dodecyltrimethylammonium bromide. Physical Chemistry Chemical Physics, 2015, 17, 26378-26385.	2.8	8

#	Article	IF	CITATIONS
73	Self-organization of photo-active nanostructures: general discussion. Faraday Discussions, 2015, 185, 529-548.	3.2	2
74	Excited-State Proton Transfer in Confined Medium. 4-Methyl-7-hydroxyflavylium and β-Naphthol Incorporated in Cucurbit[7]uril. Journal of Physical Chemistry B, 2015, 119, 2749-2757.	2.6	29
75	Photochromism of the complex between 4′-(2-hydroxyethoxy)-7-hydroxyflavylium and β-cyclodextrin, studied by 1H NMR, UV–Vis, continuous irradiation and circular dichroism. Dyes and Pigments, 2014, 110, 106-112.	3.7	9
76	Flavylium Network of Chemical Reactions in Confined Media: Modulation of 3′,4′,7â€īrihydroxyflavilium Reactions by Host–Guest Interactions with Cucurbit[7]uril. ChemPhysChem, 2014, 15, 2295-2302.	2.1	27
77	Photochromism of the natural dye 7,4′-dihydroxy-5-methoxyflavylium (dracoflavylium) in the presence of (2-hydroxypropyl)-β-cyclodextrin. Photochemical and Photobiological Sciences, 2014, 13, 1420-1426.	2.9	11
78	lonic Exchange in <i>p</i> -Sulfonatocalix[4]arene-Mediated Formation of Metal–Ligand Complexes. Journal of Physical Chemistry B, 2014, 118, 4710-4716.	2.6	20
79	Effect of β-cyclodextrin on the chemistry of 3′,4′,7-trihydroxyflavylium. New Journal of Chemistry, 2013, 37, 3166.	2.8	24
80	Aggregation of p-Sulfonatocalixarene-Based Amphiphiles and Supra-Amphiphiles. International Journal of Molecular Sciences, 2013, 14, 3140-3157.	4.1	73
81	Cooperative Assembly of Discrete Stacked Aggregates Driven by Supramolecular Host–Guest Complexation. Journal of Organic Chemistry, 2013, 78, 9113-9119.	3.2	28
82	On the photostationary state of the flavylium network of chemical reactions. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 269, 1-8.	3.9	4
83	Using Calixarenes To Model Polyelectrolyte Surfactant Nucleation Sites. Chemistry - A European Journal, 2013, 19, 4570-4576.	3.3	41
84	Molecular recognition-based catalysis in nucleophilic aromatic substitution: a mechanistic study. New Journal of Chemistry, 2012, 36, 1519.	2.8	6
85	Counterion Exchange as a Decisive Factor in the Formation of Host:Guest Complexes by <i>p</i> -Sulfonatocalix[4]arene. Journal of Physical Chemistry B, 2012, 116, 5308-5315.	2.6	29
86	Calixarene-Based Surfactants: Evidence of Structural Reorganization upon Micellization. Langmuir, 2012, 28, 2404-2414.	3.5	60
87	Independent Pathway Formation of Guest–Host in Host Ternary Complexes Made of Ammonium Salt, Calixarene, and Cyclodextrin. Journal of Organic Chemistry, 2012, 77, 10764-10772.	3.2	18
88	Insights into the Structure of the Supramolecular Amphiphile Formed by a Sulfonated Calix[6]arene and Alkyltrimethylammonium Surfactants. Langmuir, 2012, 28, 6561-6568.	3.5	54
89	Calixareneâ€Based Surfactants: Conformationalâ€Dependent Solvation Shells for the Alkyl Chains. ChemPhysChem, 2012, 13, 2368-2376.	2.1	34
90	Cucurbit[7]uril: Surfactant Host–Guest Complexes in Equilibrium with Micellar Aggregates. ChemPhysChem, 2011, 12, 1342-1350.	2.1	14

#	Article	IF	CITATIONS
91	Supramolecular Catalysis by Cucurbit[7]uril and Cyclodextrins: Similarity and Differences. Journal of Organic Chemistry, 2010, 75, 848-855.	3.2	66
92	NMR Evidence of Slow Monomerâ~'Micelle Exchange in a Calixarene-Based Surfactant. Journal of Physical Chemistry B, 2010, 114, 4816-4820.	2.6	37
93	Counterion Binding in Solutions of p-Sulfonatocalix[4]arene. Journal of Physical Chemistry B, 2010, 114, 7201-7206.	2.6	39
94	Novel catanionic vesicles from calixarene and single-chain surfactant. Chemical Communications, 2010, 46, 6551.	4.1	71
95	Sulfonated Calix[6]arene Host–Guest Complexes Induce Surfactant Selfâ€Assembly. Chemistry - A European Journal, 2009, 15, 9315-9319.	3.3	60
96	A New Reaction Pathway in the Ester Aminolysis Catalyzed by Glymes and Crown Ethers. Journal of Organic Chemistry, 2006, 71, 4280-4285.	3.2	30
97	Novel catalytic effects in ester aminolysis in chlorobenzene. Chemical Communications, 2005, , 3817.	4.1	6
98	Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release. Organic Chemistry Frontiers, 0, , .	4.5	6
99	Modulating the thermodynamics, kinetics and photochemistry of 7-diethylamino-4′-dimethylaminoflavylium in water/ethanol, SDS and CTAB micelles. Physical Chemistry Chemical Physics, 0, , .	2.8	1