Benoit Viollet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2452357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011, 13, 132-141.	10.3	5,447
2	Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 2011, 331, 456-461.	12.6	2,107
3	Cellular and molecular mechanisms of metformin: an overview. Clinical Science, 2012, 122, 253-270.	4.3	1,337
4	Metformin: From Mechanisms of Action to Therapies. Cell Metabolism, 2014, 20, 953-966.	16.2	1,019
5	Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation, 2010, 120, 2355-2369.	8.2	1,001
6	Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth. Cancer Research, 2007, 67, 6745-6752.	0.9	835
7	AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth InÂVivo. Cell Metabolism, 2013, 17, 113-124.	16.2	754
8	Metformin, Independent of AMPK, Inhibits mTORC1 in a Rag GTPase-Dependent Manner. Cell Metabolism, 2010, 11, 390-401.	16.2	747
9	Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature, 2013, 494, 256-260.	27.8	707
10	AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol. Diabetes, 2010, 59, 554-563.	0.6	595
11	The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses InÂVivo. Immunity, 2015, 42, 41-54.	14.3	505
12	Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation Research, 2016, 119, 652-665.	4.5	498
13	Knockout of the α2 but Not α1 5′-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle. Journal of Biological Chemistry, 2004, 279, 1070-1079.	3.4	484
14	Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nature Medicine, 2004, 10, 727-733.	30.7	480
15	Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. Journal of Physiology, 2006, 574, 41-53.	2.9	457
16	AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. Journal of Clinical Investigation, 2007, 117, 2325-2336.	8.2	445
17	The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. Journal of Clinical Investigation, 2003, 111, 91-98.	8.2	444
18	Activation of the AMP-Activated Kinase by Antidiabetes Drug Metformin Stimulates Nitric Oxide Synthesis In Vivo by Promoting the Association of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase. Diabetes, 2006, 55, 496-505.	0.6	411

#	Article	IF	CITATIONS
19	AMPâ€activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiologica, 2009, 196, 81-98.	3.8	401
20	5′-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments. Molecular and Cellular Biology, 2006, 26, 5336-5347.	2.3	395
21	Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 569-589.	9.6	391
22	Bcl–2 protects from lethal hepatic apoptosis induced by an ant–Fas antibody in mice. Nature Medicine, 1996, 2, 80-86.	30.7	380
23	Mechanism of Action of A-769662, a Valuable Tool for Activation of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2007, 282, 32549-32560.	3.4	376
24	AMPKα1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	16.2	375
25	AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. Journal of Clinical Investigation, 2013, 123, 4888-4899.	8.2	373
26	Short-Term Overexpression of a Constitutively Active Form of AMP-Activated Protein Kinase in the Liver Leads to Mild Hypoglycemia and Fatty Liver. Diabetes, 2005, 54, 1331-1339.	0.6	346
27	AMPK inhibition in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 276-295.	5.2	330
28	Signaling Kinase AMPK Activates Stress-Promoted Transcription via Histone H2B Phosphorylation. Science, 2010, 329, 1201-1205.	12.6	320
29	AMPK in skeletal muscle function and metabolism. FASEB Journal, 2018, 32, 1741-1777.	0.5	289
30	Anti-lipolytic Action of AMP-activated Protein Kinase in Rodent Adipocytes. Journal of Biological Chemistry, 2005, 280, 25250-25257.	3.4	286
31	Metformin Reduces Endogenous Reactive Oxygen Species and Associated DNA Damage. Cancer Prevention Research, 2012, 5, 536-543.	1.5	284
32	AMPKα2 Deletion Causes Aberrant Expression and Activation of NAD(P)H Oxidase and Consequent Endothelial Dysfunction In Vivo. Circulation Research, 2010, 106, 1117-1128.	4.5	279
33	Intestinal Gluconeogenesis Is a Key Factor for Early Metabolic Changes after Gastric Bypass but Not after Gastric Lap-Band in Mice. Cell Metabolism, 2008, 8, 201-211.	16.2	270
34	Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radical Biology and Medicine, 2009, 46, 1386-1391.	2.9	269
35	5-Aminoimidazole-4-Carboxamide-1-Â-4-Ribofuranoside Inhibits Proinflammatory Response in Glial Cells: A Possible Role of AMP-Activated Protein Kinase. Journal of Neuroscience, 2004, 24, 479-487.	3.6	260
36	Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. Journal of Clinical Investigation, 2005, 115, 2843-2854.	8.2	256

#	Article	IF	CITATIONS
37	Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1â€dependent adenosine monophosphate–activated kinase pathway. Annals of Neurology, 2011, 69, 360-374.	5.3	255
38	A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. American Journal of Physiology - Renal Physiology, 2007, 292, F617-F627.	2.7	253
39	Effects of αâ€AMPK knockout on exerciseâ€induced gene activation in mouse skeletal muscle. FASEB Journal, 2005, 19, 1146-1148.	0.5	248
40	AMPK: Lessons from transgenic and knockout animals. Frontiers in Bioscience - Landmark, 2009, Volume, 19.	3.0	248
41	Maintenance of Metabolic Homeostasis by Sestrin2 and Sestrin3. Cell Metabolism, 2012, 16, 311-321.	16.2	242
42	AMPK-Mediated AS160 Phosphorylation in Skeletal Muscle Is Dependent on AMPK Catalytic and Regulatory Subunits. Diabetes, 2006, 55, 2051-2058.	0.6	239
43	PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis. EMBO Journal, 2010, 29, 469-481.	7.8	235
44	Targeting the AMPK pathway for the treatment of Type 2 diabetes. Frontiers in Bioscience - Landmark, 2009, Volume, 3380.	3.0	227
45	Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia, 2011, 54, 3101-3110.	6.3	226
46	Liver Adenosine Monophosphate-Activated Kinase-α2 Catalytic Subunit Is a Key Target for the Control of Hepatic Glucose Production by Adiponectin and Leptin But Not Insulin. Endocrinology, 2006, 147, 2432-2441.	2.8	216
47	Resveratrol Inhibits Cardiac Hypertrophy via AMP-activated Protein Kinase and Akt. Journal of Biological Chemistry, 2008, 283, 24194-24201.	3.4	216
48	Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society Transactions, 2003, 31, 216-219.	3.4	215
49	The Â2-5'AMP-Activated Protein Kinase Is a Site 2 Glycogen Synthase Kinase in Skeletal Muscle and Is Responsive to Glucose Loading. Diabetes, 2004, 53, 3074-3081.	0.6	215
50	Activation of 5′-AMP-activated Kinase with Diabetes Drug Metformin Induces Casein Kinase Iɛ (CKIÉ›)-dependent Degradation of Clock Protein mPer2. Journal of Biological Chemistry, 2007, 282, 20794-20798.	3.4	212
51	Activation of AMP-activated protein kinase α2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nature Medicine, 2012, 18, 902-910.	30.7	209
52	Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice. Cell Metabolism, 2017, 25, 1147-1159.e10.	16.2	205
53	<scp>AMPK</scp> α1: A glucose sensor that controls <scp>CD</scp> 8 <scp>T</scp> â€eell memory. European Journal of Immunology, 2013, 43, 889-896.	2.9	201
54	Neuroprotective Effects of Adenosine Monophosphate- Activated Protein Kinase Inhibition and Gene Deletion in Stroke. Stroke, 2007, 38, 2992-2999.	2.0	198

#	Article	IF	CITATIONS
55	AMPK∫α-Ketoglutarate Axis Dynamically Mediates DNA Demethylation in the Prdm16 Promoter and Brown Adipogenesis. Cell Metabolism, 2016, 24, 542-554.	16.2	195
56	Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E435-44.	7.1	194
57	The Glycolytic Shift in Fumarate-Hydratase-Deficient Kidney Cancer Lowers AMPK Levels, Increases Anabolic Propensities and Lowers Cellular Iron Levels. Cancer Cell, 2011, 20, 315-327.	16.8	190
58	Immunochemical Characterization and Transacting Properties of Upstream Stimulatory Factor Isoforms. Journal of Biological Chemistry, 1996, 271, 1405-1415.	3.4	182
59	AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB Journal, 2014, 28, 3211-3224.	0.5	182
60	AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nature Communications, 2018, 9, 374.	12.8	179
61	Protein Kinase A-Dependent Phosphorylation Modulates DNA-Binding Activity of Hepatocyte Nuclear Factor 4. Molecular and Cellular Biology, 1997, 17, 4208-4219.	2.3	177
62	Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis. PLoS Biology, 2015, 13, e1002309.	5.6	176
63	The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood, 2010, 116, 4262-4273.	1.4	173
64	5-Aminoimidazole-4-Carboxamide-1-Â-D-Ribofuranoside and Metformin Inhibit Hepatic Glucose Phosphorylation by an AMP-Activated Protein Kinase-Independent Effect on Glucokinase Translocation. Diabetes, 2006, 55, 865-874.	0.6	171
65	AMP Activated Protein Kinase-α2 Deficiency Exacerbates Pressure-Overload–Induced Left Ventricular Hypertrophy and Dysfunction in Mice. Hypertension, 2008, 52, 918-924.	2.7	165
66	S6 Kinase Deletion Suppresses Muscle Growth Adaptations to Nutrient Availability by Activating AMP Kinase. Cell Metabolism, 2007, 5, 476-487.	16.2	163
67	Upregulation of Mitochondrial Uncoupling Protein-2 by the AMP-Activated Protein Kinase in Endothelial Cells Attenuates Oxidative Stress in Diabetes. Diabetes, 2008, 57, 3222-3230.	0.6	160
68	AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone, 2010, 47, 309-319.	2.9	160
69	Targeting AMP-activated protein kinase asÂaÂnovel therapeutic approach forÂtheÂtreatment ofÂmetabolic disorders. Diabetes and Metabolism, 2007, 33, 395-402.	2.9	156
70	Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8675-E8684.	7.1	156
71	Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E331-E339.	3.5	147
72	Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. Journal of Clinical Investigation, 2011, 121, 2518-2528.	8.2	147

#	Article	IF	CITATIONS
73	Hepatocyte Nuclear Factor-4Â Involved in Type 1 Maturity-Onset Diabetes of the Young Is a Novel Target of AMP-Activated Protein Kinase. Diabetes, 2001, 50, 1515-1521.	0.6	145
74	AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cellular Signalling, 2010, 22, 914-925.	3.6	145
75	Inhibition of AMP-Activated Protein Kinase Signaling Alleviates Impairments in Hippocampal Synaptic Plasticity Induced by Amyloid β. Journal of Neuroscience, 2014, 34, 12230-12238.	3.6	143
76	Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nature Medicine, 2015, 21, 373-382.	30.7	143
77	Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate. Cellular Signalling, 2015, 27, 978-988.	3.6	143
78	Induced Adiposity and Adipocyte Hypertrophy in Mice Lacking the AMP-Activated Protein Kinase-Â2 Subunit. Diabetes, 2004, 53, 2242-2249.	0.6	142
79	Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes, 2017, 66, 598-612.	0.6	137
80	AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine, 2018, 28, 194-209.	6.1	136
81	In Vivo Activation of AMP-Activated Protein Kinase Attenuates Diabetes-Enhanced Degradation of GTP Cyclohydrolase I. Diabetes, 2009, 58, 1893-1901.	0.6	132
82	Diet and Gastrointestinal Bypass–Induced Weight Loss. Diabetes, 2011, 60, 810-818.	0.6	132
83	The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications, 2014, 5, 4535.	12.8	131
84	Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK. Diabetes, 2016, 65, 188-200.	0.6	127
85	Differential effects of AMPK agonists on cell growth and metabolism. Oncogene, 2015, 34, 3627-3639.	5.9	121
86	AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discovery, 2015, 1, 15063.	4.7	117
87	AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nature Communications, 2016, 7, 10856.	12.8	117
88	AMP-activated Protein Kinase Inhibits Transforming Growth Factor-Î ² -induced Smad3-dependent Transcription and Myofibroblast Transdifferentiation. Journal of Biological Chemistry, 2008, 283, 10461-10469.	3.4	115
89	Prior AICAR Stimulation Increases Insulin Sensitivity in Mouse Skeletal Muscle in an AMPK-Dependent Manner. Diabetes, 2015, 64, 2042-2055.	0.6	115
90	Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO Journal, 2001, 20, 1984-1992.	7.8	113

#	Article	IF	CITATIONS
91	AMPK Regulates Circadian Rhythms in a Tissue- and Isoform-Specific Manner. PLoS ONE, 2011, 6, e18450.	2.5	113
92	AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5849-5854.	7.1	113
93	AMPK Activation by Oncogenesis Is Required to Maintain Cancer Cell Proliferation in Astrocytic Tumors. Cancer Research, 2013, 73, 2628-2638.	0.9	112
94	Expanding roles for AMPK in skeletal muscle plasticity. Trends in Endocrinology and Metabolism, 2015, 26, 275-286.	7.1	111
95	Activation of AMP kinase α1 subunit induces aortic vasorelaxation in mice. Journal of Physiology, 2007, 581, 1163-1171.	2.9	107
96	Important role for AMPKαl in limiting skeletal muscle cell hypertrophy. FASEB Journal, 2009, 23, 2264-2273.	0.5	106
97	LKB1 and AMPK regulate synaptic remodeling in old age. Nature Neuroscience, 2014, 17, 1190-1197.	14.8	106
98	Perivascular Adipose Tissue Control of Insulin-Induced Vasoreactivity in Muscle Is Impaired in db/db Mice. Diabetes, 2013, 62, 590-598.	0.6	105
99	Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Molecular and Cellular Endocrinology, 2017, 440, 57-68.	3.2	105
100	Cardiotrophin-1 Is a Key Regulator of Glucose and Lipid Metabolism. Cell Metabolism, 2011, 14, 242-253.	16.2	103
101	Mechanism of Action of Compound-13: An α1-Selective Small Molecule Activator of AMPK. Chemistry and Biology, 2014, 21, 866-879.	6.0	103
102	AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochemical Journal, 2007, 404, 499-507.	3.7	100
103	TIM-4 Glycoprotein-Mediated Degradation of Dying Tumor Cells by Autophagy Leads to Reduced Antigen Presentation and Increased Immune Tolerance. Immunity, 2013, 39, 1070-1081.	14.3	100
104	Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell, 2019, 177, 1201-1216.e19.	28.9	100
105	AMP-activated Protein Kinase Phosphorylates and Desensitizes Smooth Muscle Myosin Light Chain Kinase. Journal of Biological Chemistry, 2008, 283, 18505-18512.	3.4	99
106	Ablation of AMP-activated protein kinase α1 and α2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo. Diabetologia, 2010, 53, 924-936.	6.3	99
107	AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochemical Journal, 2012, 443, 193-203.	3.7	98
108	AMP-activated protein kinase pathway and bone metabolism. Journal of Endocrinology, 2012, 212, 277-290.	2.6	98

#	Article	IF	CITATIONS
109	AMPK Activation Reduces Hepatic Lipid Content by Increasing Fat Oxidation In Vivo. International Journal of Molecular Sciences, 2018, 19, 2826.	4.1	98
110	Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis. PLoS Pathogens, 2015, 11, e1004684.	4.7	96
111	AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells. Blood, 2010, 116, 3023-3032.	1.4	95
112	AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Scientific Reports, 2016, 6, 26758.	3.3	95
113	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	7.8	95
114	Compound C inhibits hypoxic activation of HIFâ€l independent of AMPK. FEBS Letters, 2007, 581, 5727-5731.	2.8	93
115	AMPKα1 Deletion Shortens Erythrocyte Life Span in Mice. Journal of Biological Chemistry, 2010, 285, 19976-19985.	3.4	93
116	Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Reports, 2015, 11, 1446-1457.	6.4	93
117	AMPâ€activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. European Journal of Immunology, 2008, 38, 948-956.	2.9	91
118	AMPKα1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. Journal of Leukocyte Biology, 2013, 94, 1113-1121.	3.3	91
119	Autophagy Controls p38 Activation to Promote Cell Survival under Genotoxic Stress. Journal of Biological Chemistry, 2013, 288, 1603-1611.	3.4	91
120	AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages. Annals of the Rheumatic Diseases, 2016, 75, 286-294.	0.9	91
121	Regulation of hepatic metabolism by AMPK. Journal of Hepatology, 2011, 54, 827-829.	3.7	90
122	AMPKα2 Deletion Exacerbates Neointima Formation by Upregulating Skp2 in Vascular Smooth Muscle Cells. Circulation Research, 2011, 109, 1230-1239.	4.5	90
123	Coordinated maintenance of muscle cell size control by AMPâ€activated protein kinase. FASEB Journal, 2010, 24, 3555-3561.	0.5	88
124	AMP-Activated Protein Kinase Induces p53 by Phosphorylating MDMX and Inhibiting Its Activity. Molecular and Cellular Biology, 2014, 34, 148-157.	2.3	86
125	The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy, 2015, 11, 1114-1129.	9.1	86
126	AMP-Activated Protein Kinase and Metabolic Control. Handbook of Experimental Pharmacology, 2011, , 303-330.	1.8	85

#	Article	IF	CITATIONS
127	Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene, 2018, 37, 963-970.	5.9	85
128	Stimulation of AMP-Activated Protein Kinase Is Essential for the Induction of Drug Metabolizing Enzymes by Phenobarbital in Human and Mouse Liver. Molecular Pharmacology, 2006, 70, 1925-1934.	2.3	84
129	Defining the Contribution of AMP-activated Protein Kinase (AMPK) and Protein Kinase C (PKC) in Regulation of Clucose Uptake by Metformin in Skeletal Muscle Cells. Journal of Biological Chemistry, 2012, 287, 20088-20099.	3.4	84
130	GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochemical Journal, 2017, 474, 983-1001.	3.7	84
131	Crucial role for LKB1 to AMPKα2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytesâ~†. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 212-219.	2.4	83
132	Proteome Analysis of Erythrocytes Lacking AMP-Activated Protein Kinase Reveals a Role of PAK2 Kinase in Eryptosis. Journal of Proteome Research, 2011, 10, 1690-1697.	3.7	83
133	Peroxisome Proliferator–Activated Receptor γ Coactivator 1α and FoxO3A Mediate Chondroprotection by AMPâ€Activated Protein Kinase. Arthritis and Rheumatology, 2014, 66, 3073-3082.	5.6	83
134	Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Molecular and Cellular Endocrinology, 2017, 440, 44-56.	3.2	83
135	Loss of AMP-Activated Protein Kinase-α2 Impairs the Insulin-Sensitizing Effect of Calorie Restriction in Skeletal Muscle. Diabetes, 2012, 61, 1051-1061.	0.6	82
136	Role of AMPK in UVB-induced DNA damage repair and growth control. Oncogene, 2013, 32, 2682-2689.	5.9	82
137	Beyond AICA riboside: In search of new specific AMPâ€activated protein kinase activators. IUBMB Life, 2009, 61, 18-26.	3.4	81
138	Role of the α2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2875-H2883.	3.2	80
139	Translational Tolerance of Mitochondrial Genes to Metabolic Energy Stress Involves TISU and eIF1-eIF4GI Cooperation in Start Codon Selection. Cell Metabolism, 2015, 21, 479-492.	16.2	80
140	Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Science Signaling, 2016, 9, ra109.	3.6	80
141	Cellular Energy Depletion Resets Whole-Body Energy by Promoting Coactivator-Mediated Dietary Fuel Absorption. Cell Metabolism, 2011, 13, 35-43.	16.2	78
142	Inactivation of AMPKα1 Induces Asthenozoospermia and Alters Spermatozoa Morphology. Endocrinology, 2012, 153, 3468-3481.	2.8	78
143	AMPK α1 Activation Is Required for Stimulation of Glucose Uptake by Twitch Contraction, but Not by H2O2, in Mouse Skeletal Muscle. PLoS ONE, 2008, 3, e2102.	2.5	77
144	Beyond Energy Homeostasis: the Expanding Role of AMP-Activated Protein Kinase in Regulating Metabolism. Cell Metabolism, 2015, 21, 799-804.	16.2	77

#	Article	IF	CITATIONS
145	A769662, a novel activator of AMPâ€activated protein kinase, inhibits nonâ€proteolytic components of the 26S proteasome by an AMPKâ€independent mechanism. FEBS Letters, 2008, 582, 2650-2654.	2.8	76
146	AMP Activated Protein Kinase-α2 Regulates Expression of Estrogen-Related Receptor-α, a Metabolic Transcription Factor Related to Heart Failure Development. Hypertension, 2011, 58, 696-703.	2.7	76
147	Inhibition of AMP-Activated Protein Kinase Accentuates Lipopolysaccharide-Induced Lung Endothelial Barrier Dysfunction and Lung Injury inÂVivo. American Journal of Pathology, 2013, 182, 1021-1030.	3.8	76
148	Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle, 2011, 10, 2640-2646.	2.6	75
149	Activation of AMP-activated Protein Kinase by Vascular Endothelial Growth Factor Mediates Endothelial Angiogenesis Independently of Nitric-oxide Synthase. Journal of Biological Chemistry, 2010, 285, 10638-10652.	3.4	74
150	AMP-activated Protein Kinase α2 Subunit Is Required for the Preservation of Hepatic Insulin Sensitivity by n-3 Polyunsaturated Fatty Acids. Diabetes, 2010, 59, 2737-2746.	0.6	74
151	The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporosis International, 2013, 24, 2659-2670.	3.1	74
152	Upstream Stimulatory Factor-2 (USF2) Activity Is Required for Glucose Stimulation of L-Pyruvate Kinase Promoter Activity in Single Living Islet β-Cells. Journal of Biological Chemistry, 1997, 272, 20636-20640.	3.4	71
153	Dual cardiac contractile effects of the α2-AMPK deletion in low-flow ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3136-H3147.	3.2	71
154	A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochemical Journal, 2014, 460, 363-375.	3.7	71
155	p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing. Journal of Clinical Investigation, 2016, 126, 2941-2954.	8.2	70
156	AMPKα is critical for enhancing skeletal muscle fatty acid utilization during <i>in vivo</i> exercise in mice. FASEB Journal, 2015, 29, 1725-1738.	0.5	68
157	Role of AMP-activated protein kinase in autophagy and proteasome function. Biochemical and Biophysical Research Communications, 2008, 369, 964-968.	2.1	67
158	AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction. Diabetes, 2019, 68, 1427-1440.	0.6	67
159	Aberrant Endoplasmic Reticulum Stress in Vascular Smooth Muscle Increases Vascular Contractility and Blood Pressure in Mice Deficient of AMP-Activated Protein Kinase-α2 In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 595-604.	2.4	66
160	Metformin Protects Against Systolic Overload–Induced Heart Failure Independent of AMP-Activated Protein Kinase α2. Hypertension, 2014, 63, 723-728.	2.7	66
161	α1AMP-Activated Protein Kinase Preserves Endothelial Function During Chronic Angiotensin II Treatment by Limiting Nox2 Upregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 560-566.	2.4	65
162	The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nature Communications, 2017, 8, 571.	12.8	65

#	Article	IF	CITATIONS
163	AMPK controls epithelial Na+ channels through Nedd4-2 and causes an epithelial phenotype when mutated. Pflugers Archiv European Journal of Physiology, 2009, 458, 713-721.	2.8	64
164	Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochemical and Biophysical Research Communications, 2009, 386, 16-20.	2.1	64
165	Inhibition of the AMP-Activated Protein Kinase-α2 Accentuates Agonist-Induced Vascular Smooth Muscle Contraction and High Blood Pressure in Mice. Hypertension, 2011, 57, 1010-1017.	2.7	64
166	Promise and challenges for direct small molecule AMPK activators. Biochemical Pharmacology, 2018, 153, 147-158.	4.4	63
167	Positive Regulatory Control Loop between Gut Leptin and Intestinal GLUT2/GLUT5 Transporters Links to Hepatic Metabolic Functions in Rodents. PLoS ONE, 2009, 4, e7935.	2.5	61
168	Loss of AMP-activated protein kinase α2 subunit in mouse β-cells impairs glucose-stimulated insulin secretion and inhibits their sensitivity to hypoglycaemia. Biochemical Journal, 2010, 429, 323-333.	3.7	60
169	5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) Effect on Glucose Production, but Not Energy Metabolism, Is Independent of Hepatic AMPK in Vivo. Journal of Biological Chemistry, 2014, 289, 5950-5959.	3.4	60
170	Chronic Intermittent Hypoxia Impairs Insulin Sensitivity but Improves Whole-Body Glucose Tolerance by Activating Skeletal Muscle AMPK. Diabetes, 2017, 66, 2942-2951.	0.6	60
171	Activation of AMP-activated Protein Kinase Stimulates Na+,K+-ATPase Activity in Skeletal Muscle Cells. Journal of Biological Chemistry, 2012, 287, 23451-23463.	3.4	58
172	AMPK Suppresses Vascular Inflammation In Vivo by Inhibiting Signal Transducer and Activator of Transcription-1. Diabetes, 2015, 64, 4285-4297.	0.6	58
173	Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism, 2018, 16, 24-34.	6.5	58
174	Metformin directly targets the H3K27me3 demethylase KDM6A/UTX. Aging Cell, 2018, 17, e12772.	6.7	58
175	AMPKα2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochemical and Biophysical Research Communications, 2008, 376, 677-681.	2.1	57
176	Revisiting the mechanisms of metformin action in the liver. Annales D'Endocrinologie, 2013, 74, 123-129.	1.4	57
177	AMP-Activated Protein Kinase α1 but Not α2 Catalytic Subunit Potentiates Myogenin Expression and Myogenesis. Molecular and Cellular Biology, 2013, 33, 4517-4525.	2.3	57
178	AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR. FASEB Journal, 2019, 33, 12374-12391.	0.5	57
179	AMP-activated protein kinase activator A-769662 is an inhibitor of the Na+-K+-ATPase. American Journal of Physiology - Cell Physiology, 2009, 297, C1554-C1566.	4.6	56
180	Stromal Lkb1 deficiency leads to gastrointestinal tumorigenesis involving the IL-11–JAK/STAT3 pathway. Journal of Clinical Investigation, 2017, 128, 402-414.	8.2	56

#	Article	IF	CITATIONS
181	AMPK as a therapeutic target in renal cell carcinoma. Cancer Biology and Therapy, 2010, 10, 1168-1177.	3.4	55
182	CDK4 Phosphorylates AMPKα2 to Inhibit Its Activity and Repress Fatty Acid Oxidation. Molecular Cell, 2017, 68, 336-349.e6.	9.7	55
183	Phenformin, But Not Metformin, Delays Development of T Cell Acute Lymphoblastic Leukemia/Lymphoma via Cell-Autonomous AMPK Activation. Cell Reports, 2019, 27, 690-698.e4.	6.4	54
184	Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKα1. Journal of Molecular and Cellular Cardiology, 2014, 74, 32-43.	1.9	52
185	Genetic Deletion of Catalytic Subunits of AMP-activated Protein Kinase Increases Osteoclasts and Reduces Bone Mass in Young Adult Mice. Journal of Biological Chemistry, 2013, 288, 12187-12196.	3.4	51
186	Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival. Genes and Diseases, 2016, 3, 82-87.	3.4	51
187	TATA Binding Protein Discriminates between Different Lesions on DNA, Resulting in a Transcription Decrease. Molecular and Cellular Biology, 1998, 18, 3907-3914.	2.3	50
188	AMP-Activated Protein Kinase Â2 Deficiency Affects Cardiac Cardiolipin Homeostasis and Mitochondrial Function. Diabetes, 2007, 56, 786-794.	0.6	50
189	AMP-activated Protein Kinase Suppresses Matrix Metalloproteinase-9 Expression in Mouse Embryonic Fibroblasts. Journal of Biological Chemistry, 2011, 286, 16030-16038.	3.4	50
190	Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochemical Journal, 2013, 455, 195-206.	3.7	50
191	CCCP induces autophagy in an AMPK-independent manner. Biochemical and Biophysical Research Communications, 2011, 416, 343-348.	2.1	49
192	Connection Between Cardiac Vascular Permeability, Myocardial Edema, and Inflammation During Sepsis. Critical Care Medicine, 2013, 41, e411-e422.	0.9	48
193	AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes. PLoS ONE, 2013, 8, e81870.	2.5	48
194	Activation of the AMP-Activated Protein Kinase by Eicosapentaenoic Acid (EPA, 20:5 n-3) Improves Endothelial Function In Vivo. PLoS ONE, 2012, 7, e35508.	2.5	47
195	Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. Journal of Biological Chemistry, 2017, 292, 20125-20140.	3.4	46
196	Chronic Exposure to Nicotine Enhances Insulin Sensitivity through α7 Nicotinic Acetylcholine Receptor-STAT3 Pathway. PLoS ONE, 2012, 7, e51217.	2.5	43
197	Ion Channel Regulation by AMPK. Annals of the New York Academy of Sciences, 2009, 1177, 89-100.	3.8	42
198	AMPK α2 subunit is involved in platelet signaling, clot retraction, and thrombus stability. Blood, 2010, 116, 2134-2140.	1.4	42

#	Article	IF	CITATIONS
199	AMPK Alpha 1-Induced RhoA Phosphorylation Mediates Vasoprotective Effect of Estradiol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2634-2642.	2.4	42
200	AMP-activated Protein Kinase Deficiency Blocks the Hypoxic Ventilatory Response and Thus Precipitates Hypoventilation and Apnea. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1032-1043.	5.6	41
201	LRH-1/hB1F and HNF1 synergistically up-regulate hepatitis B virus gene transcription and DNA replication. Cell Research, 2003, 13, 451-458.	12.0	40
202	Role of Adenosine 5′-Monophosphate-Activated Protein Kinase in Interleukin-6 Release from Isolated Mouse Skeletal Muscle. Endocrinology, 2009, 150, 600-606.	2.8	40
203	Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Research, 2012, 40, 4368-4384.	14.5	40
204	Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 529-540.	3.8	40
205	Role of Adenosine 5′-Monophosphate-Activated Protein Kinase Subunits in Skeletal Muscle Mammalian Target of Rapamycin Signaling. Molecular Endocrinology, 2008, 22, 1105-1112.	3.7	39
206	Basal autophagy induction without AMP-activated protein kinase under low glucose conditions. Autophagy, 2009, 5, 1155-1165.	9.1	39
207	AMP-Activated Protein Kinase α1 Protects Against Diet-Induced Insulin Resistance and Obesity. Diabetes, 2012, 61, 3114-3125.	0.6	39
208	lonizing radiation regulates the expression of AMP-activated protein kinase (AMPK) in epithelial cancer cells. Radiotherapy and Oncology, 2012, 102, 459-465.	0.6	39
209	AMPK Activation by A-769662 Controls IL-6 Expression in Inflammatory Arthritis. PLoS ONE, 2015, 10, e0140452.	2.5	39
210	AMPKα1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression. Journal of Hepatology, 2014, 60, 152-159.	3.7	38
211	AMPK Activation Promotes Tight Junction Assembly in Intestinal Epithelial Caco-2 Cells. International Journal of Molecular Sciences, 2019, 20, 5171.	4.1	38
212	AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. American Journal of Physiology - Cell Physiology, 2013, 305, C887-C895.	4.6	37
213	Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovascular Research, 2014, 101, 20-29.	3.8	36
214	Impaired Expression of Uncoupling Protein 2 Causes Defective Postischemic Angiogenesis in Mice Deficient in AMP-Activated Protein Kinase α Subunits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1757-1765.	2.4	35
215	Prevention of steatohepatitis by pioglitazone: Implication of adiponectin-dependent inhibition of SREBP-1c and inflammation. Journal of Hepatology, 2009, 50, 489-500.	3.7	34
216	Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients. PLoS ONE, 2011, 6, e28981.	2.5	34

#	Article	lF	CITATIONS
217	Enhanced Ca ²⁺ entry and Na ⁺ /Ca ²⁺ exchanger activity in dendritic cells from AMPâ€activated protein kinaseâ€deficient mice. FASEB Journal, 2012, 26, 3049-3058.	0.5	34
218	Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Molecular and Cellular Endocrinology, 2016, 423, 96-112.	3.2	34
219	Lack of AMPKα2 enhances pyruvate dehydrogenase activity during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1242-E1249.	3.5	33
220	Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake, independent of AMPK. Cellular Signalling, 2008, 20, 543-556.	3.6	33
221	The AMPKyl subunit plays an essential role in erythrocyte membrane elasticity, and its genetic inactivation induces splenomegaly and anemia. FASEB Journal, 2011, 25, 337-347.	0.5	33
222	The AMPK-SIRT signaling network regulates glucose tolerance under calorie restriction conditions. Life Sciences, 2014, 100, 55-60.	4.3	33
223	AMP Activated Protein Kinase Is Indispensable for Myocardial Adaptation to Caloric Restriction in Mice. PLoS ONE, 2013, 8, e59682.	2.5	33
224	Regulation of Clâ^' secretion by AMPK in vivo. Pflugers Archiv European Journal of Physiology, 2009, 457, 1071-1078.	2.8	32
225	Protein Kinase D1 Is Essential for Contraction-induced Glucose Uptake but Is Not Involved in Fatty Acid Uptake into Cardiomyocytes. Journal of Biological Chemistry, 2012, 287, 5871-5881.	3.4	32
226	α1AMP-Activated Protein Kinase Mediates Vascular Protective Effects of Exercise. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1632-1641.	2.4	32
227	Endothelial α1AMPK modulates angiotensin II-mediated vascular inflammation and dysfunction. Basic Research in Cardiology, 2019, 114, 8.	5.9	32
228	Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Molecular Metabolism, 2020, 40, 101028.	6.5	32
229	Adenosine-Mono-Phosphate-Activated Protein Kinase-Independent Effects of Metformin in T Cells. PLoS ONE, 2014, 9, e106710.	2.5	31
230	PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy, 2014, 10, 1522-1534.	9.1	31
231	The Ca2+ /calmodulin-dependent kinase kinaseÂβ-AMP-activated protein kinase-α1 pathway regulates phosphorylation of cytoskeletal targets in thrombin-stimulated human platelets. Journal of Thrombosis and Haemostasis, 2014, 12, 973-986.	3.8	30
232	Regulation of cdc2 gene expression by the upstream stimulatory factors (USFs). Oncogene, 1999, 18, 1945-1955.	5.9	28
233	Cold tolerance, cold-induced hyperphagia, and nonshivering thermogenesis are normal in α ₁ -AMPK ^{â*'/â*'} mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R473-R483.	1.8	28
234	Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth. European Journal of Cancer, 2014, 50, 3187-3197.	2.8	28

#	Article	IF	CITATIONS
235	Specific Deletion of AMP-Activated Protein Kinase (α1AMPK) in Murine Oocytes Alters Junctional Protein Expression and Mitochondrial Physiology. PLoS ONE, 2015, 10, e0119680.	2.5	28
236	AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E900-E914.	3.5	28
237	AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes?. Current Drug Targets, 2016, 17, 942-953.	2.1	28
238	The stress polarity signaling (SPS) pathway serves as a marker and a target in the leaky gut barrier: implications in aging and cancer. Life Science Alliance, 2020, 3, e201900481.	2.8	28
239	Iron overload inHepc1â°'/â°'mice is not impairing glucose homeostasis. FEBS Letters, 2007, 581, 1053-1057.	2.8	27
240	Development of hepatic fibrosis occurs normally in AMPK-deficient mice. Clinical Science, 2010, 118, 411-420.	4.3	27
241	Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice. Journal of Nutrition, 2017, 147, 1669-1676.	2.9	27
242	The LKB1–AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria. Science Signaling, 2018, 11, .	3.6	27
243	Regulation of the Proteasome by AMPK in Endothelial Cells: The Role of O-GlcNAc Transferase (OGT). PLoS ONE, 2012, 7, e36717.	2.5	26
244	A Conserved Sequence Immediately N-terminal to the Bateman Domains in AMP-activated Protein Kinase Î ³ Subunits Is Required for the Interaction with the β Subunits. Journal of Biological Chemistry, 2007, 282, 16117-16125.	3.4	25
245	Homo-oligomerization and Activation of AMP-activated Protein Kinase Are Mediated by the Kinase Domain αG-Helix. Journal of Biological Chemistry, 2009, 284, 27425-27437.	3.4	25
246	Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators. Exs, 2016, 107, 327-350.	1.4	25
247	AMP-Activated Protein Kinase Suppresses Autoimmune Central Nervous System Disease by Regulating M1-Type Macrophage–Th17 Axis. Journal of Immunology, 2016, 197, 747-760.	0.8	25
248	Maintenance of red blood cell integrity by AMPâ€activated protein kinase α1 catalytic subunit. FEBS Letters, 2010, 584, 3667-3671.	2.8	24
249	Direct Binding of Arsenic Trioxide to AMPK and Generation of Inhibitory Effects on Acute Myeloid Leukemia Precursors. Molecular Cancer Therapeutics, 2015, 14, 202-212.	4.1	24
250	Endothelial autophagic flux hampers atherosclerotic lesion development. Autophagy, 2018, 14, 173-175.	9.1	24
251	AMP-activated protein kinase deficiency reduces ozone-induced lung injury and oxidative stress in mice. Respiratory Research, 2011, 12, 64.	3.6	23
252	LKB1 and AMPKα1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia. Molecular Metabolism, 2015, 4, 277-286.	6.5	23

#	Article	IF	CITATIONS
253	Myeloid-Restricted AMPKα1 Promotes Host Immunity and Protects against IL-12/23p40–Dependent Lung Injury during Hookworm Infection. Journal of Immunology, 2016, 196, 4632-4640.	0.8	23
254	LKB1 as a Gatekeeper of Hepatocyte Proliferation and Genomic Integrity during Liver Regeneration. Cell Reports, 2018, 22, 1994-2005.	6.4	23
255	Human γδT cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2. Science Immunology, 2021, 6, .	11.9	23
256	Acadesine Inhibits Tissue Factor Induction and Thrombus Formation by Activating the Phosphoinositide 3-Kinase/Akt Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1000-1006.	2.4	22
257	Mice lacking AMP-activated protein kinase α1 catalytic subunit have increased bone remodelling and modified skeletal responses to hormonal challenges induced by ovariectomy and intermittent PTH treatment. Journal of Endocrinology, 2012, 214, 349-358.	2.6	22
258	$\hat{l}\pm 1$ AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovascular Research, 2018, 114, 1883-1893.	3.8	22
259	Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation. Journal of Biological Chemistry, 2020, 295, 3330-3346.	3.4	22
260	AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia. Cell Reports, 2022, 38, 110197.	6.4	22
261	The relationship between p38 mitogen-activated protein kinase and AMP-activated protein kinase during myocardial ischemia. Cardiovascular Research, 2007, 76, 465-472.	3.8	21
262	Adenosine Monophosphate–Activated Protein Kinase-α2 Deficiency Promotes Vascular Smooth Muscle Cell Migration via S-Phase Kinase–Associated Protein 2 Upregulation and E-Cadherin Downregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2800-2809.	2.4	21
263	Differential regulation of eEF2 and p70S6K by AMPKalpha2 in heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 780-790.	3.8	20
264	AMP-activated Protein Kinase α2 and E2F1 Transcription Factor Mediate Doxorubicin-induced Cytotoxicity by Forming a Positive Signal Loop in Mouse Embryonic Fibroblasts and Non-carcinoma Cells. Journal of Biological Chemistry, 2014, 289, 4839-4852.	3.4	20
265	Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation. PLoS ONE, 2017, 12, e0170382.	2.5	20
266	Hepatocyte Nuclear Factor 1α Controls the Expression of Terminal Complement Genes. Journal of Experimental Medicine, 2001, 194, 1683-1690.	8.5	19
267	Hypoglycemia-Sensing Neurons of the Ventromedial Hypothalamus Require AMPK-Induced Txn2 Expression but Are Dispensable for Physiological Counterregulation. Diabetes, 2020, 69, 2253-2266.	0.6	19
268	Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cellular Signalling, 2019, 57, 45-57.	3.6	18
269	Paradoxical activation of AMPK by glucose drives selective EP300 activityÂin colorectal cancer. PLoS Biology, 2020, 18, e3000732.	5.6	18
270	Apoptolidins A and C activate AMPK in metabolically sensitive cell types and are mechanistically distinct from oligomycin A. Biochemical Pharmacology, 2015, 93, 251-265.	4.4	17

#	Article	IF	CITATIONS
271	Deletion of intestinal epithelial AMP-activated protein kinase alters distal colon permeability but not glucose homeostasis. Molecular Metabolism, 2021, 47, 101183.	6.5	17
272	Stimulation of human and mouse erythrocyte Na ⁺ –K ⁺ –2Cl ^{â^'} cotransport by osmotic shrinkage does not involve AMPâ€activated protein kinase, but is associated with STE20/SPS1â€related proline/alanineâ€rich kinase activation. Journal of Physiology, 2010, 588, 2315-2328.	2.9	16
273	Inhibition of mitochondrial complex 1 by the S6K1 inhibitor PF-4708671 partly contributes to its glucose metabolic effects in muscle and liver cells. Journal of Biological Chemistry, 2019, 294, 12250-12260.	3.4	16
274	Role of AMP-activated protein kinase in the regulation of gene transcription. Biochemical Society Transactions, 2002, 30, 307-311.	3.4	15
275	Functional analysis of the glucose response element of the rat glucagon receptor gene in insulin-producing INS-1 cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 175-186.	2.4	15
276	Biotin deprivation impairs mitochondrial structure and function and has implications for inherited metabolic disorders. Molecular Genetics and Metabolism, 2015, 116, 204-214.	1.1	15
277	Metformin reduces macrophage HIF1α-dependent proinflammatory signaling to restore brown adipocyte function in vitro. Redox Biology, 2021, 48, 102171.	9.0	15
278	Overexpression of AMP-activated protein kinase or protein kinase D prevents lipid-induced insulin resistance in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2013, 55, 165-173.	1.9	14
279	Metformin takes a new route to clinical efficacy. Nature Reviews Endocrinology, 2015, 11, 390-392.	9.6	14
280	Interleukinâ€6 deletion in mice driven by a <scp>P</scp> 2â€ <scp>C</scp> reâ€ <scp>ERT</scp> 2 prevents against highâ€fat dietâ€induced gain weight and adiposity in female mice. Acta Physiologica, 2014, 211, 585-596.	3.8	13
281	The adenosine monophosphate–activated protein kinase—vacuolar adenosine triphosphatase–pH axis: A key regulator of the profibrogenic phenotype of human hepatic stellate cells. Hepatology, 2018, 68, 1140-1153.	7.3	13
282	AICAR Antiproliferative Properties Involve the AMPK-Independent Activation of the Tumor Suppressors LATS 1 and 2. Neoplasia, 2018, 20, 555-562.	5.3	13
283	Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance. PLoS ONE, 2016, 11, e0149549.	2.5	13
284	A functional role for AMPK in female fertility and endometrial regeneration. Reproduction, 2018, 156, 501-513.	2.6	13
285	Intestinal Epithelial AMPK Deficiency Causes Delayed Colonic Epithelial Repair in DSS-Induced Colitis. Cells, 2022, 11, 590.	4.1	13
286	At the crossroads of fertility and metabolism: the importance of AMPK-dependent signaling in female infertility associated with hyperandrogenism. Human Reproduction, 2022, 37, 1207-1228.	0.9	13
287	Embryonic but Not Postnatal Reexpression of Hepatocyte Nuclear Factor 1α (HNF1α) Can Reactivate the Silent Phenylalanine Hydroxylase Gene in HNF1α-Deficient Hepatocytes. Molecular and Cellular Biology, 2001, 21, 3662-3670.	2.3	12
288	Understanding the Molecular Basis of the Interaction between NDPK-A and AMPK α1. Molecular and Cellular Biology, 2006, 26, 5921-5931.	2.3	12

#	Article	IF	CITATIONS
289	Bypassing AMPK Phosphorylation. Chemistry and Biology, 2014, 21, 567-569.	6.0	12
290	AMPK is not required for the effect of metformin on the inhibition of BMP6-induced hepcidin gene expression in hepatocytes. Scientific Reports, 2017, 7, 12679.	3.3	12
291	A RAS-CaMKKβ-AMPKα2 pathway promotes senescence by licensing post-translational activation of C/EBPβ through a novel 3′UTR mechanism. Oncogene, 2018, 37, 3528-3548.	5.9	12
292	Editorial: Metformin: Beyond Diabetes. Frontiers in Endocrinology, 2019, 10, 851.	3.5	12
293	A possible role for AMP-activated protein kinase in exercise-induced glucose utilization: insights from humans and transgenic animals. Biochemical Society Transactions, 2003, 31, 186-190.	3.4	11
294	Non-CDK-bound p27 (p27NCDK) is a marker for cell stress and is regulated through the Akt/PKB and AMPK-kinase pathways. Experimental Cell Research, 2010, 316, 762-774.	2.6	11
295	Kidney-specific genetic deletion of both AMPK α-subunits causes salt and water wasting. American Journal of Physiology - Renal Physiology, 2017, 312, F352-F365.	2.7	11
296	Reciprocity Between Skeletal Muscle AMPK Deletion and Insulin Action in Diet-Induced Obese Mice. Diabetes, 2020, 69, 1636-1649.	0.6	11
297	Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents. Journal of Biological Chemistry, 2020, 295, 5836-5849.	3.4	11
298	AMPK Signaling Involvement for the Repression of the IL-1β-Induced Group IIA Secretory Phospholipase A2 Expression in VSMCs. PLoS ONE, 2015, 10, e0132498.	2.5	11
299	Inactivation of AMPK Leads to Attenuation of Antigen Presentation and Immune Evasion in Lung Adenocarcinoma. Clinical Cancer Research, 2022, 28, 227-237.	7.0	11
300	Expression of Uncoupling Protein 3 and GLUT4 Gene in Skeletal Muscle of Preterm Newborns: Possible Control by AMP-Activated Protein Kinase. Pediatric Research, 2006, 60, 569-575.	2.3	10
301	AMP-activated Protein Kinase. Exs, 2016, , .	1.4	10
302	Acidosisâ€induced activation of distal nephron principal cells triggers Gdf15 secretion and adaptive proliferation of intercalated cells. Acta Physiologica, 2021, 232, e13661.	3.8	10
303	The Energy Sensor AMPK: Adaptations to Exercise, Nutritional and Hormonal Signals. Research and Perspectives in Endocrine Interactions, 2017, , 13-24.	0.2	10
304	AMP-activated Protein Kinase Up-regulates Mitogen-activated Protein (MAP) Kinase-interacting Serine/Threonine Kinase 1a-dependent Phosphorylation of Eukaryotic Translation Initiation Factor 4E. Journal of Biological Chemistry, 2016, 291, 17020-17027.	3.4	9
305	Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1412-1422.	3.8	8
306	Knockdown of Human AMPK Using the CRISPR/Cas9 Genome-Editing System. Methods in Molecular Biology, 2018, 1732, 171-194.	0.9	8

#	Article	IF	CITATIONS
307	Finely-tuned regulation of AMP-activated protein kinase is crucial for human adult erythropoiesis. Haematologica, 2019, 104, 907-918.	3.5	8
308	Cell adhesion suppresses autophagy via Src/FAK-mediated phosphorylation and inhibition of AMPK. Cellular Signalling, 2022, 89, 110170.	3.6	8
309	AMP-Activated Protein Kinase Signalling. International Journal of Molecular Sciences, 2019, 20, 766.	4.1	7
310	AMP-activated protein kinase is dispensable for maintaining ATP levels and for survival following inhibition of glycolysis, but promotes tumour engraftment of Ras-transformed fibroblasts. Oncotarget, 2015, 6, 11833-11847.	1.8	7
311	Role of Cardiac AMP-Activated Protein Kinase in a Non-pathological Setting: Evidence From Cardiomyocyte-Specific, Inducible AMP-Activated Protein Kinase α1α2-Knockout Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 731015.	3.7	7
312	Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the α1 or the α2 isoform of the catalytic domain of AMPK. BMC Nephrology, 2013, 14, 251.	1.8	6
313	Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. Journal of Lipid Research, 2020, 61, 1697-1706.	4.2	6
314	Activation of Adenosine Monophosphate—Activated Protein Kinase Reduces the Onset of Dietâ€Induced Hepatocellular Carcinoma in Mice. Hepatology Communications, 2020, 4, 1056-1072.	4.3	6
315	Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight, 2022, 7, .	5.0	6
316	Animal Models to Study AMPK. Exs, 2016, 107, 441-469.	1.4	5
317	Loss of AMPKα2 Impairs Hedgehog-Driven Medulloblastoma Tumorigenesis. International Journal of Molecular Sciences, 2018, 19, 3287.	4.1	5
318	Activation of AMPK for a Break in Hepatic Lipid Accumulation and Circulating Cholesterol. EBioMedicine, 2018, 31, 15-16.	6.1	5
319	AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro. American Journal of Physiology - Renal Physiology, 2021, 320, G543-G556.	3.4	5
320	An auxiliary peptide required for the function of two activation domains in upstream stimulatory factor 2 (USF2) transcription factor. Genes and Function, 1997, 1, 87-97.	2.8	4
321	Metformine et cancer. Du diabète au cancerÂ: de nouvelles perspectives thérapeutiques pour la metformine. Medecine Des Maladies Metaboliques, 2011, 5, 29-37.	0.1	4
322	AMPK activation by SC4 inhibits noradrenaline-induced lipolysis and insulin-stimulated lipogenesis in white adipose tissue. Biochemical Journal, 2021, 478, 3869-3889.	3.7	4
323	Lack of Endothelial α1AMPK Reverses the Vascular Protective Effects of Exercise by Causing eNOS Uncoupling. Antioxidants, 2021, 10, 1974.	5.1	4
324	The Marine-Derived Macrolactone Mandelalide A Is an Indirect Activator of AMPK. Marine Drugs, 2022, 20, 418.	4.6	4

#	Article	IF	CITATIONS
325	Mécanisme d'action hépatique de la metformine dans le diabète de type 2. Medecine Des Maladies Metaboliques, 2009, 3, 48-54.	0.1	3
326	Measurement of AMPK-Induced Inhibition of Lipid Synthesis Flux in Cultured Cells. Methods in Molecular Biology, 2018, 1732, 363-371.	0.9	3
327	Hepatic Peroxisome Proliferator-Activated Receptor γ Coactivator 1α and Hepcidin Are Coregulated in Fasted/Refed States in Mice. Clinical Chemistry, 2012, 58, 1487-1488.	3.2	2
328	Close encounters of a novel kind: A multi-targeted cancer drug meets a metabolic sensor. Cancer Biology and Therapy, 2010, 10, 77-78.	3.4	1
329	Disorders in AMPK and Insulin Signalling Pathways in the Intestine of Insulin-Resistant and Diabetic Psammomys Obesus. Gastroenterology, 2011, 140, S-544.	1.3	1
330	Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice Journal of Biological Chemistry, 2013, 288, 23432.	3.4	1
331	Editorial (Thematic Issue: AMPK: New Frontiers in Human Diseases). Current Drug Targets, 2016, 17, 852-852.	2.1	1
332	343 Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival. Journal of Investigative Dermatology, 2016, 136, S60.	0.7	1
333	Editorial: AMPK and mTOR Beyond Signaling: Emerging Roles in Transcriptional Regulation. Frontiers in Cell and Developmental Biology, 2020, 8, 641552.	3.7	1
334	AMPK and the Metabolic Syndrome. , 0, , 541-569.		0
335	467 IMPACT OF AMP-ACTIVATED PROTEIN KINASE (AMPK) ON THE CONTROL OF HEPATIC STELLATE CELLS (HSCS) ACTIVATION IN VITRO. Journal of Hepatology, 2008, 48, S178.	3.7	0
336	Understanding the Molecular Basis of the Interaction between NDPK-A and AMPK $\hat{I}\pm 1.$ Molecular and Cellular Biology, 2008, 28, 5827-5827.	2.3	0
337	Localization, Structure and Regulation of AMP-Activated Protein Kinase in the Small Intestine. Gastroenterology, 2011, 140, S-543.	1.3	0
338	678 AMP-ACTIVATED PROTEIN KINASE (AMPK) IS REQUIRED FOR G1/S PROGRESSION DURING LIVER REGENERATION. Journal of Hepatology, 2011, 54, S273.	3.7	0
339	1262 ROLE OF SIRT1 AND AMPK IN THE DEVELOPMENT OF INSULIN RESISTANCE ASSOCIATED TO NON-ALCOHOLIC FATTY LIVER DISEASE. Journal of Hepatology, 2012, 56, S499.	3.7	0
340	Targeting tumour-stromal interactions – differential pharmacological modification of AMPK/mTORC1 in human hepatic stellate cells and hepatocellular carcinoma. Journal of Hepatology, 2017, 66, S461.	3.7	0
341	The vacuolar adenosine tri-phosphatase (v-ATPase) proton pump as therapeutic target in human activated HSC. Journal of Hepatology, 2017, 66, S650.	3.7	0
342	Macrophage AMPKα1 is necessary for the resolution of inflammation during skeletal muscle regeneration. FASEB Journal, 2012, 26, 1078.5.	0.5	0

#	Article	IF	CITATIONS
343	AMPK regulates contractionâ€induced glucose uptake in situ but not ex vivo. FASEB Journal, 2013, 27, 1202.12.	0.5	0
344	Abstract C55: Investigating mechanisms of gastrointestinal polyposis and osteoblastic tumor formation induced by mesenchymal Lkb1 deficiency. , 2013, , .		0
345	Co-Activation of AMPK and mTORC1 Is Synthetically Lethal in Acute Myeloid Leukemia. Blood, 2014, 124, 616-616.	1.4	0
346	The P2Y6-AMPK Pathway Triggers Autophagy during CSF-1-Induced Human Monocyte Differentiation and Is a Potential Target in CMML. Blood, 2014, 124, 4347-4347.	1.4	0