Giulia Grisendi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2452160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipose-Derived Mesenchymal Stem Cells as Stable Source of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery for Cancer Therapy. Cancer Research, 2010, 70, 3718-3729.	0.4	226
2	Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Translational Medicine, 2019, 8, 1135-1148.	1.6	182
3	Blocking Tumor-Educated MSC Paracrine Activity Halts Osteosarcoma Progression. Clinical Cancer Research, 2017, 23, 3721-3733.	3.2	150
4	In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina. Molecular Therapy - Nucleic Acids, 2016, 5, e389.	2.3	147
5	Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget, 2014, 5, 7575-7588.	0.8	121
6	Inhibiting Interactions of Lysine Demethylase LSD1 with Snail/Slug Blocks Cancer Cell Invasion. Cancer Research, 2013, 73, 235-245.	0.4	117
7	Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Medicine, 2015, 13, 186.	2.3	109
8	Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia. Oncotarget, 2016, 7, 65968-65981.	0.8	84
9	Isolation, Characterization, and Transduction of Endometrial Decidual Tissue Multipotent Mesenchymal Stromal/Stem Cells from Menstrual Blood. BioMed Research International, 2013, 2013, 1-14.	0.9	80
10	Suppression of Invasion and Metastasis of Triple-Negative Breast Cancer Lines by Pharmacological or Genetic Inhibition of Slug Activity. Neoplasia, 2014, 16, 1047-1058.	2.3	78
11	Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance. Oncotarget, 2016, 7, 63408-63423.	0.8	78
12	Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Therapy, 2020, 27, 558-570.	2.2	65
13	A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget, 2015, 6, 24884-24894.	0.8	61
14	GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion. Cytotherapy, 2010, 12, 466-477.	0.3	59
15	Soluble TRAIL Armed Human MSC As Gene Therapy For Pancreatic Cancer. Scientific Reports, 2019, 9, 1788.	1.6	57
16	Adipose stromal/stem cells assist fat transplantation reducing necrosis and increasing graft performance. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1274-1289.	2.2	56
17	Mesenchymal Progenitors Aging Highlights a miR-196 Switch Targeting HOXB7 as Master Regulator of Proliferation and Osteogenesis. Stem Cells, 2015, 33, 939-950.	1.4	56
18	Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2020, 8, 737.	1.8	52

GIULIA GRISENDI

#	Article	IF	CITATIONS
19	IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells, 2013, 31, 2193-2204.	1.4	51
20	A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology. Scientific Reports, 2019, 9, 7154.	1.6	50
21	<i>In vitro</i> antiâ€myeloma activity of <scp>TRAIL</scp> â€expressing adiposeâ€derived mesenchymal stem cells. British Journal of Haematology, 2012, 157, 586-598.	1.2	46
22	Mesenchymal Progenitors Expressing <scp>TRAIL</scp> Induce Apoptosis in Sarcomas. Stem Cells, 2015, 33, 859-869.	1.4	46
23	Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence. Cancers, 2022, 14, 976.	1.7	46
24	Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy. Cancer Gene Therapy, 2019, 26, 11-16.	2.2	45
25	MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 209-266.	0.6	44
26	GD2 CAR T cells against human glioblastoma. Npj Precision Oncology, 2021, 5, 93.	2.3	43
27	Transportation Conditions for Prompt Use of <i>Ex Vivo</i> Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration. Tissue Engineering - Part C: Methods, 2014, 20, 239-251.	1.1	39
28	MSC-Delivered Soluble TRAIL and Paclitaxel as Novel Combinatory Treatment for Pancreatic Adenocarcinoma. Theranostics, 2019, 9, 436-448.	4.6	39
29	Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Oncotarget, 2017, 8, 6914-6928.	0.8	38
30	Detection of microparticles from human red blood cells by multiparametric flow cytometry. Blood Transfusion, 2015, 13, 274-80.	0.3	38
31	IFN-β Expression Is Directly Activated in Human Neutrophils Transfected with Plasmid DNA and Is Further Increased via TLR-4–Mediated Signaling. Journal of Immunology, 2012, 189, 1500-1509.	0.4	35
32	Isolation and Identification of Cancer Stem-Like Cells in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: A Pilot Study. Frontiers in Oncology, 2019, 9, 1394.	1.3	35
33	CD271 Down-Regulation Promotes Melanoma Progression and Invasion in Three-Dimensional Models and in Zebrafish. Journal of Investigative Dermatology, 2016, 136, 2049-2058.	0.3	33
34	TRAIL delivered by mesenchymal stromal/stem cells counteracts tumor development in orthotopic Ewing sarcoma models. International Journal of Cancer, 2016, 139, 2802-2811.	2.3	31
35	Carbonic anhydrase IX inhibition is an effective strategy for osteosarcoma treatment. Expert Opinion on Therapeutic Targets, 2015, 19, 1593-1605.	1.5	28
36	CD271 Mediates Stem Cells to Early Progeny Transition in Human Epidermis. Journal of Investigative Dermatology, 2015, 135, 786-795.	0.3	27

GIULIA GRISENDI

#	Article	IF	CITATIONS
37	Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget, 2021, 12, 230-250.	0.8	27
38	Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. American Journal of Cancer Research, 2011, 1, 787-805.	1.4	23
39	CD44+/EPCAM+ cells detect a subpopulation of ALDHhigh cells in human non-small cell lung cancer: A chance for targeting cancer stem cells?. Oncotarget, 2020, 11, 1545-1555.	0.8	22
40	Correlating tumor-infiltrating lymphocytes and lung cancer stem cells: a cross-sectional study. Annals of Translational Medicine, 2019, 7, 619-619.	0.7	20
41	Arming Mesenchymal Stromal/Stem Cells Against Cancer: Has the Time Come?. Frontiers in Pharmacology, 2020, 11, 529921.	1.6	17
42	Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. Stem Cell Research and Therapy, 2019, 10, 101.	2.4	16
43	Effects of enzastaurin, alone or in combination, on signaling pathway controlling growth and survival of B-cell lymphoma cell lines. Leukemia and Lymphoma, 2010, 51, 671-679.	0.6	14
44	Bone marrow derived mesenchymal stem/stromal cells transduced with full length human TRAIL repress the growth of rhabdomyosarcoma cells in vitro. Haematologica, 2011, 96, e21-e22.	1.7	14
45	In vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factor–related apoptosis inducing ligand in osteosarcoma pre-clinical models. Cytotherapy, 2018, 20, 1037-1045.	0.3	14
46	The Release of Inflammatory Mediators from Acid-Stimulated Mesenchymal Stromal Cells Favours Tumour Invasiveness and Metastasis in Osteosarcoma. Cancers, 2021, 13, 5855.	1.7	14
47	Resistance to neoplastic transformation of <i>ex-vivo</i> expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress. Oncotarget, 2016, 7, 77416-77429.	0.8	12
48	Persistency of Mesenchymal Stromal/Stem Cells in Lungs. Frontiers in Cell and Developmental Biology, 2021, 9, 709225.	1.8	11
49	Tumor Stroma Manipulation By MSC. Current Drug Targets, 2016, 17, 1111-1126.	1.0	11
50	Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine, 2020, 60, 102987.	2.7	10
51	Anti-GD2 CAR MSCs against metastatic Ewing's sarcoma. Translational Oncology, 2022, 15, 101240.	1.7	10
52	Acid microenvironment promotes cell survival of human bone sarcoma through the activation of cIAP proteins and NF-κB pathway. American Journal of Cancer Research, 2019, 9, 1127-1144.	1.4	10
53	Proposal of a Novel Natural Biomaterial, the Scleral Ossicle, for the Development of Vascularized Bone Tissue In Vitro. Biomedicines, 2018, 6, 3.	1.4	9
54	Human Herpes simplex 1 virus infection of endometrial decidual tissue-derived MSC alters HLA-G expression and immunosuppressive functions. Human Immunology, 2018, 79, 800-808.	1.2	9

GIULIA GRISENDI

#	Article	IF	CITATIONS
55	New Perspectives in Different Gene Expression Profiles for Early and Locally Advanced Non-Small Cell Lung Cancer Stem Cells. Frontiers in Oncology, 2021, 11, 613198.	1.3	9
56	Phosphorylation of serine 21 modulates the proliferation inhibitory more than the differentiation inducing effects of C/EBPα in K562 cells. Journal of Cellular Biochemistry, 2012, 113, 1704-1713.	1.2	8
57	Combination of low doses of Enzastaurin and Lenalidomide has synergistic activity in B-non-Hodgkin lymphoma cell lines. Annals of Hematology, 2012, 91, 1613-1622.	0.8	8
58	OUP accepted manuscript. Stem Cells Translational Medicine, 2022, 11, 239-247.	1.6	8
59	Sarcomas as a mise en abyme of mesenchymal stem cells: Exploiting interrelationships for cell mediated anticancer therapy. Cancer Letters, 2012, 325, 1-10.	3.2	7
60	Cancer stem-neuroendocrine cells in an atypical carcinoid case report. Translational Lung Cancer Research, 2019, 8, 1157-1162.	1.3	7
61	Surrounding Pancreatic Adenocarcinoma by Killer Mesenchymal Stromal/Stem Cells. Human Gene Therapy, 2014, 25, 406-407.	1.4	6
62	Cancer Stem-Like Cells in a Case of an Inflammatory Myofibroblastic Tumor of the Lung. Frontiers in Oncology, 2020, 10, 673.	1.3	6
63	A 3D Platform to Investigate Dynamic Cell-to-Cell Interactions Between Tumor Cells and Mesenchymal Progenitors. Frontiers in Cell and Developmental Biology, 2021, 9, 767253.	1.8	2
64	Cancer Stem Cells and Cell Cycle Genes as Independent Predictors of Relapse in Non-small Cell Lung Cancer: Secondary Analysis of a Prospective Study. Stem Cells Translational Medicine, 2022, 11, 797-804.	1.6	1
65	Effects of Enzastaurin, Alone or in Combination, on Signalling Pathway Controlling Growth and Survival of B-Cell Lymphoma Cell Lines. Blood, 2008, 112, 4978-4978.	0.6	0
66	Ibrutinib Targets Nurse-like Cells Supporting an Immunosuppressive Phenotype in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 613-613.	0.6	0
67	TRAIL receptors are expressed in both malignant and stromal cells in pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2021, 11, 4500-4514.	1.4	0