Alberto E Minetti

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2452084/publications.pdf
Version: 2024-02-01

103papers	6,066 citations	8434 h-index	8471 g-index
106 all docs	106 docs citations	106 times ranked	5002 citing authors

2 Mechanical work as a (key) determinant of energy cost in human locomotion: recent findings and future directions. Experimental Physiology, 2021, 106, 1897-1908.

Prof. Neill Alexander's influence on modeling and optimization theory of movement and locomotion.
Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2020, 333, 5-8.
$0.9 \quad 1$

Frictional internal work of damped limbs oscillation in human locomotion. Proceedings of the Royal
1.2

11
Society B: Biological Sciences, 2020, 287, 20201410.

LOCOMOZIONE UMANA E ANIMALE A DIFFERENTI GRAVITÃf â, \neg : ADATTAMENTI BIOMECCANICI ED EFFETTI
5 METABOLICI. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2020, , .
$0.0 \quad 0$
speeds in short stairs ascending. Journal of Experimental Biology, 2020, 223,
0.8

Biomechanical and metabolic aspects of backward (and forward) running on uphill gradients:
7 another clue towards an almost inelastic rebound. European Journal of Applied Physiology, 2020, 120,
$1.2 \quad 7$
2507-2515.

8 Race Walking Ground Reaction Forces at Increasing Speeds: A Comparison with Walking and Running.
Symmetry, 2019, 11, 873.

9 Comprehensive mechanical power analysis in sprint running acceleration. Scandinavian Journal of
$9 \quad$ Medicine and Science in Sports, 2019, 29, 1892-1900.

10 Mechanical work in shuttle running as a function of speed and distance: Implications for power and efficiency. Human Movement Science, 2019, 66, 487-496.
0.6

14

Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic
11 versus rigid â $Є^{\sim}$ ankleâ $€^{\mathrm{TM}}$: insights from body centre of mass dynamics. Journal of NeuroEngineering and
2.4

Rehabilitation, 2019, 16, 39.

12 Biomechanics of Alpine Skiing. Sports Et Traumatologie, 2018, , 1-7.
$0.0 \quad 0$

13 Update and extension of the â ϵ^{\sim} Equivalent Slopeâ $\epsilon^{T M}$ of speed changing level locomotion in humans: a
$0.8 \quad 16$
computational model for shuttle running. Journal of Experimental Biology, 2018, 221, .

Recumbent vs. upright bicycles: 3D trajectory of body centre of mass, limb mechanical work, and operative range of propulsive muscles. Journal of Sports Sciences, 2017, 35, 491-499.
1.0

2

19	Hopping locomotion at different gravity: metabolism and mechanics in humans. Journal of Applied Physiology, 2016, 120, 1223-1229.	1.2	25
20	Mechanical work and efficiency of 5Â+Â5Âm shuttle running. European Journal of Applied Physiology, 2016, 116, 1911-1919.	1.2	34
21	Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer. Physiological Reports, 2015, 3, el2500.	0.7	19
22	Breaststroke swimmers moderate internal work increases toward the highest stroke frequencies. Journal of Biomechanics, 2015, 48, 3012-3016.	0.9	4
23	Shoulder 3D range of motion and humerus rotation in two volleyball spike techniques: injury prevention and performance. Sports Biomechanics, 2015, 14, 216-231.	0.8	28
24	Skipping vs. running as the bipedal gait of choice in hypogravity. Journal of Applied Physiology, 2015, 119, 93-100.	1.2	50
25	The biomechanics of race walking: Literature overview and new insights. European Journal of Sport Science, 2014, 14, 661-670.	1.4	35

Skyscraper running: physiological and biomechanical profile of a novel sport activity. Scandinavian
Journal of Medicine and Science in Sports, 2011, 21, 293-301.

Measured and predicted mechanical internal work in human locomotion. Human Movement Science, 2011, 30, 90-104.

Bioenergetics and biomechanics of cycling: the role of â $€^{\top}$ internal workâ $€^{T M}$. European Journal of Applied Physiology, 2011, 111, 323-329.

The mathematical description of the body centre of mass 3D path in human and animal locomotion. Journal of Biomechanics, 2011, 44, 1471-1477.

Biomechanics of octopedal locomotion: kinematic and kinetic analysis of the spider <i>Grammostola
$41 \begin{aligned} & \text { Biomechanics of octopedal locomotion: kinematic and kinetic analysis } \\ & \text { mollicoma</i>. Journal of Experimental Biology, 2011, 214, 3433-3442. }\end{aligned}$
$0.8 \quad 42$

The optimum finger spacing in human swimming. Journal of Biomechanics, 2009, 42, 2188-2190.
0.9

Centre of mass motion during stair negotiation in young and older men. Gait and Posture, 2007, 26,
463-469.

The Impact of Physical Training on Locomotor Function in Older People. Sports Medicine, 2007, 37, 683-701.
3.1

67
44 The Impact $683-701$.

Human locomotion on ice: the evolution of ice-skating energetics through history. Journal of
Experimental Biology, 2007, 210, 1825-1833.

Keystroke dynamics and timing: Accuracy, precision and difference between hands in pianist's
46 performance. Journal of Biomechanics, 2007, 40, 3738-3743.
0.9

18

The first humans travelling on ice: an energy-saving strategy?. Biological Journal of the Linnean
Society, 2007, 93, 1-7.

Gastrocnemius muscle?tendon behaviour during walking in young and older adults. Acta
Physiologica, 2007, 189, 57-65.

Effect of a 12-month physical conditioning programme on the metabolic cost of walking in healthy
older adults. European Journal of Applied Physiology, 2007, 100, 499-505.

Himalayan porter's specialization: metabolic power, economy, efficiency and skill. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2791-2797.

Economy and efficiency of swimming at the surface with fins of different size and stiffness. European
Journal of Applied Physiology, 2006, 96, 459-470.
1.2

281

Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta

$51 \quad$ Physiologica, 2006, 186, 127-139.

1.8

53 An energy balance of front crawl. European Journal of Applied Physiology, 2005, 94, 134-144.
1.2

113

Magnetic Resonance Imaging of the Rectum During Distension. Diseases of the Colon and Rectum, 2005,
48, 1220-1227.
Passive tools for enhancing muscle-driven motion and locomotion. Journal of Experimental Biology,
$2004,207,1265-1272$.

58 Biomechanical and physiological aspects of legged locomotion in humans. European Journal of
A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and
running in humans. Journal of Applied Physiology, 2003, 95, 838-843.

METABOLIC COST OF WALKING AT SET AND SELF-SELECTED SPEEDS IN OLDER MALES AND FEMALES.	0.2	
Medicine and Science in Sports and Exercise, 2003, 35, S296.	1	
63	Plantar flexor activation capacity and H reflex in older adults: adaptations to strength training. Journal of Applied Physiology, 2002, 92, 2292-2302.	1.2
$64 \quad$Energy cost of walking and running at extreme uphill and downhill slopes. Journal of Applied Physiology, 2002, 93, 1039-1046.		

Mechanical efficiency of cycling with a new developed pedalâ€"crank. Journal of Biomechanics, 2002, 35,
Invariant aspects of human locomotion in different gravitational environments. Acta Astronautica,
$2001,49,191-198$.
2001, 49, 191-198.

74 Walking on other planets. Nature, 2001, 409, 467-469.
13.7

59

75 Energetics and Mechanics of Human Walking at Oscillating Speeds1. American Zoologist, 2001, 41,
$205-210$.

Energetics and Mechanics of Human Walking at Oscillating Speeds. American Zoologist, 2001, 41,
0.7

205-210.

Correction for Minetti <i>et al. </i>, From bipedalism to bicyclism: evolution in energetics and
77 biomechanics of historic bicycles. Proceedings of the Royal Society B: Biological Sciences, 2001, 268,
1.2 2616-2616.

78 From bipedalism to bicyclism: evolution in energetics and biomechanics of historic bicycles.
Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1351-1360.

Mechanical and metabolic profile of locomotion in adults with childhood-onset CH deficiency.
Mechanical and metabolic profile of locomotion in adu
European Journal of Endocrinology, 2000, 142, 35-41.
1.9

29

The relationship between mechanical work and energy expenditure of locomotion in horses. Journal
of Experimental Biology, 1999, 202, 2329-38.
0.8

123
81 A model equation for the prediction of mechanical internal work of terrestrial locomotion. Journal
of Biomechanics, 1998, $31,463-468$.
$0.9 \quad 95$

The biomechanics of skipping gaits: a third locomotion paradigm?. Proceedings of the Royal Society B:
Biological Sciences, 1998, 265, 1227-1233.
1.2
83 Using leg muscles as shock absorbers: theoretical predictions and experimental results of drop
landing performance. Ergonomics, 1998, 41, 1771-1791.

The interplay of central and peripheral factors in limiting maximal O2consumption in man after prolonged bed rest. Journal of Physiology, 1997, 501, 677-686.
1.3

148

85 A Theory of Metabolic Costs for Bipedal Gaits. Journal of Theoretical Biology, 1997, 186, 467-476.
0.8

185

86 Effects of stride frequency on mechanical power and energy expenditure of walking. Medicine and Science in Sports and Exercise, 1995, 27, 1194???1202.
0.2

113

Metabolic and mechanical aspects of foot landing type, forefoot and rearfoot strike, in human
2.3

76 running. Acta Physiologica Scandinavica, 1995, 155, 17-22.

Optimum gradient of mountain paths. Journal of Applied Physiology, 1995, 79, 1698-1703.
1.2

60

Effects of stride frequency on mechanical power and energy expenditure of walking. Medicine and
Science in Sports and Exercise, 1995, 27, 1194-202.
0.2

41

A model for the estimation of visceral mass displacement in periodic movements. Journal of
Biomechanics, 1994, 27, 97-101.

Pygmy locomotion. European Journal of Applied Physiology and Occupational Physiology, 1994, 68, 285-290.
1.2

The transition between walking and running in humans: metabolic and mechanical aspects at different

Mechanical Determinants of the Minimum Energy Cost of Gradient Running in Humans. Journal of
94 Experimental Biology, 1994, 195, 211-225.

96 Mechanical determinants of gradient walking energetics in man.. Journal of Physiology, 1993, 472,
725-735.
1.3
Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area
and strength measurements. European Journal of Applied Physiology and Occupational Physiology,
$1992,65,438-444$.

98 Mechanical Work Rate Minimization and Freely Chosen Stride Frequency of Human Walking: A
Mathematical Model. Journal of Experimental Biology, 1992, 170, 19-34.
0.8

46
99 Mechanical work rate minimization and freely chosen stride frequency of human walking: a
mathematical model. Journal of Experimental Biology, 1992, 170, 19-34.
100 IV. Oxygen Transport System Before and After Exposure to Chronic Hypoxia. International Journal of Sports Medicine, 1990, 11, S15-S20.
0.8

27
0.8

29
Changes in force, cross-sectional area and neural activation during strength training and detraining
of the human quadriceps. European Journal of Applied Physiology and Occupational Physiology, 1989,
$59,310-319$.

Respiratory airflow pattern in patients with chronic airway obstruction. Clinical Physiology, 1987, 7, 283-296.

