
Marina Lusic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2452045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Walking the LINEs hidden in the dark matter of the genome. Nature Genetics, 2022, 54, 98-99.	9.4	0
2	The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication <i>In Vitro</i> and Decreases Viral Titers and Disease Progression in Syrian Hamsters. MBio, 2022, 13, e0370521.	1.8	22
3	Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell, 2021, 184, 1032-1046.e18.	13.5	179
4	Viruses in the Nucleus. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039446.	2.3	10
5	HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. ELife, 2021, 10, .	2.8	71
6	Glycolysis downregulation is a hallmark of HIVâ€I latency and sensitizes infected cells to oxidative stress. EMBO Molecular Medicine, 2021, 13, e13901.	3.3	30
7	Microscopyâ€based assay for semiâ€quantitative detection of SARSâ€CoVâ€2 specific antibodies in human sera. BioEssays, 2021, 43, e2000257.	1.2	22
8	3D Immuno-DNA Fluorescence In Situ Hybridization (FISH) for Detection of HIV-1 and Cellular Genes in Primary CD4+ T Cells. Methods in Molecular Biology, 2021, 2157, 239-249.	0.4	0
9	NHC-gold compounds mediate immune suppression through induction of AHR-TGFÎ ² 1 signalling in vitro and in scurfy mice. Communications Biology, 2020, 3, 10.	2.0	14
10	Patient-Derived HIV-1 Nef Alleles Reveal Uncoupling of CD4 Downregulation and SERINC5 Antagonism Functions of the Viral Pathogenesis Factor. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 85, e23-e26.	0.9	5
11	Spatial–Temporal Variations in Atmospheric Factors Contribute to SARS-CoV-2 Outbreak. Viruses, 2020, 12, 588.	1.5	36
12	Alterations of redox and iron metabolism accompany the development of <scp>HIV</scp> latency. EMBO Journal, 2020, 39, e102209.	3.5	37
13	Potential impact of the antirheumatic agent auranofin on proviral HIV-1 DNA in individuals under intensified antiretroviral therapy: Results from a randomised clinical trial. International Journal of Antimicrobial Agents, 2019, 54, 592-600.	1.1	29
14	Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration. Nature Communications, 2019, 10, 4059.	5.8	84
15	Navigating through the nucleus with a virus. Current Opinion in Genetics and Development, 2019, 55, 100-105.	1.5	5
16	Hypoxic Environment Promotes Barrier Formation in Human Intestinal Epithelial Cells through Regulation of MicroRNA 320a Expression. Molecular and Cellular Biology, 2019, 39, .	1.1	34
17	Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nature Communications, 2019, 10, 926.	5.8	39
18	Multifunctional Roles of the N-Terminal Region of HIV-1 _{SF2} Nef Are Mediated by Three Independent Protein Interaction Sites. Journal of Virology, 2019, 94, .	1.5	17

MARINA LUSIC

#	Article	IF	CITATIONS
19	HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. ELife, 2019, 8, .	2.8	142
20	Coloring hidden viruses. ELife, 2018, 7, .	2.8	0
21	Role of Histone Deacetylases 1 and Yin Yang 1 Protein in Proviral Latency. , 2018, , 1826-1830.		0
22	Nuclear landscape of HIV-1 infection and integration. Nature Reviews Microbiology, 2017, 15, 69-82.	13.6	101
23	Inhibition of Non Canonical HIV-1 Tat Secretion Through the Cellular Na + ,K + -ATPase Blocks HIV-1 Infection. EBioMedicine, 2017, 21, 170-181.	2.7	31
24	Connecting <scp>HIV</scp> †integration and transcription: a step toward new treatments. FEBS Letters, 2016, 590, 1927-1939.	1.3	11
25	HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter. Retrovirology, 2015, 12, 104.	0.9	62
26	Nuclear architecture dictates HIV-1 integration site selection. Nature, 2015, 521, 227-231.	13.7	277
27	Regulation of HIV-1 Latency by Chromatin Structure and Nuclear Architecture. Journal of Molecular Biology, 2015, 427, 688-694.	2.0	38
28	Role of Histone Deacetylases 1 and Yin Yang 1 Protein in Proviral Latency. , 2015, , 1-5.		1
29	Ground Control to Major Tom: "Prepare for HIV Landing― Cell Host and Microbe, 2014, 16, 557-559.	5.1	2
30	Epigenetic Modification at Notch Responsive Promoters Blunts Efficacy of Inducing Notch Pathway Reactivation After Myocardial Infarction. Circulation Research, 2014, 115, 636-649.	2.0	56
31	HIV-1 Integrase Binding to its Cellular Partners: A Perspective from Computational Biology. Current Pharmaceutical Design, 2014, 20, 3412-3421.	0.9	1
32	Proximity to PML Nuclear Bodies Regulates HIV-1 Latency in CD4+ T Cells. Cell Host and Microbe, 2013, 13, 665-677.	5.1	97
33	The TRIM Family Protein KAP1 Inhibits HIV-1 Integration. Cell Host and Microbe, 2011, 9, 484-495.	5.1	109
34	Negative Regulation of HIV-1 Transcription by a Heterodimeric NF-κB1/p50 and C-Terminally Truncated STAT5 Complex. Journal of Molecular Biology, 2011, 410, 933-943.	2.0	17
35	126 PML Nuclear Bodies Determine the Repressive Environment and Restrict Viral Gene Expression in Primary Human Lymphocytes. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, 51.	0.9	0
36	125 Naturally C-Terminally Truncated STAT5 (STAT5Δ): A Negative Controller of HIV-1 Transcription and Expression. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, 50.	0.9	0

MARINA LUSIC

#	Article	IF	CITATIONS
37	Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nature Medicine, 2010, 16, 329-333.	15.2	101
38	Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO Journal, 2009, 28, 2231-2243.	3.5	64
39	Gene looping between the viral LTRs is a hallmark of transcriptionally active HIV-1 and Mo-MLV proviral DNA. Retrovirology, 2009, 6, .	0.9	0
40	Spatial juxtaposition of HIV-1 provirus with PML and KAKA bodies as revealed by 3D Immuno DNA FISH. Retrovirology, 2009, 6, .	0.9	0
41	Naturally C-Terminally truncated STAT5 (STAT5Δ): a novel negative controller of HIV-1 transcription and expression. Retrovirology, 2009, 6, .	0.9	0
42	HIV-1 acetylated integrase is targeted by KAP1 (TRIM28) to inhibit viral integration. Retrovirology, 2009, 6, .	0.9	3
43	The histone chaperone protein Nucleosome Assembly Protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology, 2008, 5, 8.	0.9	48
44	Transcription-Dependent Gene Looping of the HIV-1 Provirus Is Dictated by Recognition of Pre-mRNA Processing Signals. Molecular Cell, 2008, 29, 56-68.	4.5	96
45	Acetylation of Conserved Lysines in the Catalytic Core of Cyclin-Dependent Kinase 9 Inhibits Kinase Activity and Regulates Transcription. Molecular and Cellular Biology, 2008, 28, 2201-2212.	1.1	81
46	Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood, 2007, 109, 5380-5389.	0.6	36
47	Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO Journal, 2005, 24, 3070-3081.	3.5	159
48	Nuclear organization and the control of HIV-1 transcription. Gene, 2004, 326, 1-11.	1.0	44
49	Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO Journal, 2003, 22, 2156-2166.	3.5	61
50	Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO Journal, 2003, 22, 6550-6561.	3.5	204
51	Induced synthesis of albumin-like protein in damaged rat reticulocytes. British Journal of Haematology, 2001, 115, 205-212.	1.2	3
52	DIFFERENCES IN RAT RBC CYTOSOL INDUCED AFTER IN VIVO PHENYLHYDRAZINE TREATMENT. Cell Biology International, 1999, 23, 677-683.	1.4	1