Laurent Terray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/245195/publications.pdf

Version: 2024-02-01

122 papers 8,285 citations

47006 47 h-index 87 g-index

127 all docs

127 docs citations

127 times ranked 8091 citing authors

#	Article	IF	CITATIONS
1	Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models. Geoscientific Model Development, 2022, 15, 269-289.	3.6	22
2	Imprint of intrinsic ocean variability on decadal trends of regional sea level and ocean heat content using synthetic profiles. Environmental Research Letters, 2022, 17, 044063.	5.2	4
3	Investigating Parametric Dependence of Climate Feedbacks in the Atmospheric Component of CNRM M6â€1. Geophysical Research Letters, 2022, 49, .	4.0	2
4	Extratropical Transition of Tropical Cyclones in a Multiresolution Ensemble of Atmosphere-Only and Fully Coupled Global Climate Models. Journal of Climate, 2022, 35, 5283-5306.	3.2	9
5	Tracking Changes in Climate Sensitivity in CNRM Climate Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002190.	3.8	7
6	A dynamical adjustment perspective on extreme event attribution. Weather and Climate Dynamics, 2021, 2, 971-989.	3 . 5	13
7	Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002014.	3.8	59
8	Boreal-winter teleconnections with tropical Indo-Pacific rainfall in HighResMIP historical simulations from the PRIMAVERA project. Climate Dynamics, 2020, 55, 1843-1873.	3.8	15
9	Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032184.	3.3	69
10	The dependence of the northern extratropical climate response to external forcing on the phase of Atlantic Multidecadal Variability. Climate Dynamics, 2020, 55, 487-502.	3.8	0
11	Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophysical Research Letters, 2020, 47, e2020GL088662.	4.0	119
12	Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble. Journal of Climate, 2020, 33, 2557-2583.	3.2	141
13	A tale of two futures: contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environmental Research Letters, 2020, 15, 064007.	5.2	44
14	Influence of model resolution on bomb cyclones revealed by HighResMIP-PRIMAVERA simulations. Environmental Research Letters, 2020, 15, 084001.	5.2	12
15	The Moisture Budget of Tropical Cyclones in HighResMIP Models: Large-Scale Environmental Balance and Sensitivity to Horizontal Resolution. Journal of Climate, 2020, 33, 8457-8474.	3.2	19
16	Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project PhaseÂ5 to 6 and sensitivity to resolution. Weather and Climate Dynamics, 2020, 1, 277-292.	3.5	49
17	Past long-term summer warming over western Europe in new generation climate models: role of large-scale atmospheric circulation. Environmental Research Letters, 2020, 15, 084038.	5.2	5
18	Evaluation of CNRM Earth System Model, CNRMâ€ESM2â€1: Role of Earth System Processes in Presentâ€Day and Future Climate. Journal of Advances in Modeling Earth Systems, 2019, 11, 4182-4227.	3.8	309

#	Article	IF	CITATIONS
19	Evaluation of CMIP6 DECK Experiments With CNRMâ€CM6â€1. Journal of Advances in Modeling Earth Systems, 2019, 11, 2177-2213.	3.8	494
20	Human Influence on Winter Precipitation Trends (1921–2015) over North America and Eurasia Revealed by Dynamical Adjustment. Geophysical Research Letters, 2019, 46, 3426-3434.	4.0	52
21	Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Climate Dynamics, 2019, 52, 6817-6846.	3.8	57
22	Intrinsic and Atmospherically Forced Variability of the AMOC: Insights from a Large-Ensemble Ocean Hindcast. Journal of Climate, 2018, 31, 1183-1203.	3.2	52
23	Chaotic Variability of Ocean: Heat Content Climate-Relevant Features and Observational Implications. Oceanography, 2018, 31, .	1.0	30
24	Contributions of Atmospheric Forcing and Chaotic Ocean Variability to Regional Sea Level Trends Over 1993–2015. Geophysical Research Letters, 2018, 45, 13,405.	4.0	20
25	Inverse Cascades of Kinetic Energy as a Source of Intrinsic Variability: A Global OGCM Study. Journal of Physical Oceanography, 2018, 48, 1385-1408.	1.7	46
26	Attributing the U.S. Southwest's Recent Shift Into Drier Conditions. Geophysical Research Letters, 2018, 45, 6251-6261.	4.0	82
27	Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Climate Dynamics, 2017, 49, 3693-3713.	3.8	77
28	Decadal prediction skill using a high-resolution climate model. Climate Dynamics, 2017, 49, 3527-3550.	3.8	9
29	A global probabilistic study of the ocean heat content lowâ€frequency variability: Atmospheric forcing versus oceanic chaos. Geophysical Research Letters, 2017, 44, 5580-5589.	4.0	35
30	Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature. Environmental Research Letters, 2017, 12, 054010.	5.2	12
31	Toward a New Estimate of "Time of Emergence―of Anthropogenic Warming: Insights from Dynamical Adjustment and a Large Initial-Condition Model Ensemble. Journal of Climate, 2017, 30, 7739-7756.	3.2	81
32	Future summer mega-heatwave and record-breaking temperatures in a warmer France climate. Environmental Research Letters, 2017, 12, 074025.	5.2	54
33	Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution. Geoscientific Model Development, 2017, 10, 1091-1106.	3.6	43
34	Observed southern upper-ocean warming over 2005–2014 and associated mechanisms. Environmental Research Letters, 2016, 11, 124023.	5.2	51
35	Emergence of human influence on summer recordâ€breaking temperatures over Europe. Geophysical Research Letters, 2016, 43, 404-412.	4.0	24
36	Detection of anthropogenic influence on the evolution of record-breaking temperatures over Europe. Climate Dynamics, 2016, 46, 2717-2735.	3.8	8

#	Article	IF	Citations
37	Quantifying uncertainties on regional sea level change induced by multidecadal intrinsic oceanic variability. Geophysical Research Letters, 2016, 43, 8151-8159.	4.0	48
38	Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model. Climate Dynamics, 2016, 46, 1699-1717.	3.8	47
39	Drift dynamics in a coupled model initialized for decadal forecasts. Climate Dynamics, 2016, 46, 1819-1840.	3.8	47
40	Forced and Internal Components of Winter Air Temperature Trends over North America during the past 50 Years: Mechanisms and Implications*. Journal of Climate, 2016, 29, 2237-2258.	3.2	189
41	Can metric-based approaches really improve multi-model climate projections? The case of summer temperature change in France. Climate Dynamics, 2015, 45, 1913-1928.	3.8	11
42	A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Climate Dynamics, 2015, 45, 867-880.	3.8	44
43	Estimating the Anthropogenic Sea Surface Temperature Response Using Pattern Scaling. Journal of Climate, 2015, 28, 3751-3763.	3.2	7
44	Intrinsic Variability of Sea Level from Global Ocean Simulations: Spatiotemporal Scales. Journal of Climate, 2015, 28, 4279-4292.	3.2	90
45	An assessment of a multi-model ensemble of decadal climate predictions. Climate Dynamics, 2015, 44, 2787-2806.	3.8	56
46	Land–sea contrast, soil-atmosphere and cloud-temperature interactions: interplays and roles in future summer European climate change. Climate Dynamics, 2014, 42, 683-699.	3.8	42
47	Projected 21st century snowfall changes over the French Alps and related uncertainties. Climatic Change, 2014, 122, 583-594.	3.6	20
48	Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resources Research, 2014, 50, 3317-3341.	4.2	75
49	A statistical method to estimate PM _{2.5} concentrations from meteorology and its application to the effect of climate change. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3537-3585.	3.3	16
50	Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis. Climate Dynamics, 2013, 41, 2817-2836.	3.8	139
51	Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature. Climate Dynamics, 2013, 41, 2837-2853.	3.8	87
52	Quantifying 21st-century France climate change and related uncertainties. Comptes Rendus - Geoscience, 2013, 345, 136-149.	1.2	59
53	Impact of climate change on the hydrogeology of two basins in northern France. Climatic Change, 2013, 121, 771-785.	3.6	48
54	Identifying human influences on atmospheric temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 26-33.	7.1	117

#	Article	IF	CITATIONS
55	Comparaison de deux méthodes de désagrégation pour l'étude du climat et du changement climatique sur les zones de montagne en France. Houille Blanche, 2013, , 22-29.	0.3	0
56	Changes in Variability Associated with Climate Change. , 2013, , 249-271.		2
57	Near-Surface Salinity as Nature's Rain Gauge to Detect Human Influence on the Tropical Water Cycle. Journal of Climate, 2012, 25, 958-977.	3.2	122
58	The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability. Climate Dynamics, 2012, 39, 2109-2125.	3.8	38
59	Evidence for multiple drivers of North Atlantic multiâ€decadal climate variability. Geophysical Research Letters, 2012, 39, .	4.0	89
60	The dynamical link between surface cyclones, upperâ€tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophysical Research Letters, 2012, 39, .	4.0	29
61	Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?. Climate Dynamics, 2012, 38, 877-896.	3.8	13
62	Mechanisms for European summer temperature response to solar forcing over the last millennium. Climate of the Past, 2012, 8, 1487-1495.	3.4	4
63	Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret,) Tj ETQq1 10.7	'84314 rg 4.9	BT /Overloc
64	A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part II: methodology, validation and application to high-resolution ocean models. Climate Dynamics, 2011, 36, 401-417.	3.8	10
65	A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables. Climate Dynamics, 2011, 36, 19-39.	3.8	40
66	Natural forcing of climate during the last millennium: fingerprint of solar variability. Climate Dynamics, 2011, 36, 1349-1364.	3.8	103
67	Impact of climate change on surface winds in France using a statisticalâ€dynamical downscaling method with mesoscale modelling. International Journal of Climatology, 2011, 31, 415-430.	3.5	44
68	On North American Decadal Climate for 2011–20. Journal of Climate, 2011, 24, 4519-4528.	3.2	34
69	Évolution potentielle du régime des crues de la Seine sous changement climatique. Houille Blanche, 2011, 97, 51-57.	0.3	17
70	Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dynamics, 2010, 35, 75-94.	3.8	91
71	Statistical issues about solar–climate relations. Climate of the Past, 2010, 6, 565-573.	3.4	12
72	Le lien entre circulation atmosphérique de grande échelle et canicules pour la prévision à longue échéance et l'impact du changement climatique. Houille Blanche, 2010, 96, 67-71.	0.3	0

#	Article	IF	CITATIONS
73	A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Climate Dynamics, 2009, 32, 615-634.	3.8	62
74	Uncertainties in European summer precipitation changes: role of large scale circulation. Climate Dynamics, 2009, 33, 265-276.	3.8	44
75	Projected changes in components of the hydrological cycle in French river basins during the 21st century. Water Resources Research, 2009, 45, .	4.2	105
76	Impacts of climate change on the hydrological cycle: Application to France's river basins. IOP Conference Series: Earth and Environmental Science, 2009, 6, 292052.	0.3	0
77	Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophysical Research Letters, 2008, 35, .	4.0	71
78	Expected impacts of climate change on extreme climate events. Comptes Rendus - Geoscience, 2008, 340, 564-574.	1.2	122
79	Intraâ€seasonal atmospheric variability and extreme precipitation events in the Europeanâ€Mediterranean region. Geophysical Research Letters, 2008, 35, .	4.0	13
80	A Weather-Type Approach to Analyzing Winter Precipitation in France: Twentieth-Century Trends and the Role of Anthropogenic Forcing. Journal of Climate, 2008, 21, 3118-3133.	3.2	61
81	Régimes de temps et désagrégation d'échelle. Houille Blanche, 2008, 94, 45-51.	0.3	8
82	Interaction between Near-Annual and ENSO Modes in a CGCM Simulation: Role of the Equatorial Background Mean State. Journal of Climate, 2007, 20, 1035-1052.	3.2	23
83	Rectification of ENSO Variability by Interdecadal Changes in the Equatorial Background Mean State in a CGCM Simulation. Journal of Climate, 2007, 20, 2002-2021.	3.2	31
84	Statistical and dynamical downscaling of the Seine basin climate for hydroâ€meteorological studies. International Journal of Climatology, 2007, 27, 1643-1655.	3.5	416
85	A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling. Journal of Geophysical Research, 2006, $111,\dots$	3.3	100
86	Influence of increased greenhouse gases and sulphate aerosols concentration upon diurnal temperature range over Africa at the end of the 20th century. Geophysical Research Letters, 2006, 33, .	4.0	7
87	West African monsoon response to greenhouse gas and sulphate aerosol forcing under two emission scenarios. Climate Dynamics, 2006, 26, 531-547.	3.8	12
88	Interannual to Decadal Climate Predictability in the North Atlantic: A Multimodel-Ensemble Study. Journal of Climate, 2006, 19, 1195-1203.	3.2	161
89	Mechanisms of tropical Pacific interannual-to-decadal variability in the ARPEGE/ORCA global coupled model. Climate Dynamics, 2005, 24, 823-842.	3.8	31
90	Quasi-decadal and inter-decadal climate fluctuations in the Pacific Ocean from a CGCM. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	21

#	Article	IF	Citations
91	Large-scale atmospheric dynamics and local intense precipitation episodes. Geophysical Research Letters, 2005, 32, .	4.0	24
92	Tropical Atlantic Influence on European Heat Waves. Journal of Climate, 2005, 18, 2805-2811.	3.2	366
93	An intercomparison between the surface heat flux feedback in five coupled models, COADS and the NCEP reanalysis. Climate Dynamics, 2004, 22, 373-388.	3.8	42
94	Summer Sea Surface Temperature Conditions in the North Atlantic and Their Impact upon the Atmospheric Circulation in Early Winter. Journal of Climate, 2004, 17, 3349-3363.	3.2	70
95	Representing El Niño in Coupled Ocean–Atmosphere GCMs: The Dominant Role of the Atmospheric Component. Journal of Climate, 2004, 17, 4623-4629.	3.2	135
96	North Atlantic Winter Climate Regimes: Spatial Asymmetry, Stationarity with Time, and Oceanic Forcing. Journal of Climate, 2004, 17, 1055-1068.	3.2	233
97	Simulation of Late-Twenty-First-Century Changes in Wintertime Atmospheric Circulation over Europe Due to Anthropogenic Causes. Journal of Climate, 2004, 17, 4630-4635.	3.2	48
98	Model study of the North Atlantic region atmospheric response to autumn tropical Atlantic sea-surface-temperature anomalies. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2591-2611.	2.7	43
99	Sea surface temperature associations with the late Indian summer monsoon. Climate Dynamics, 2003, 21, 593-618.	3.8	103
100	Tropical Atlantic Sea Surface Temperature Forcing of Quasi-Decadal Climate Variability over the North Atlantic–European Region. Journal of Climate, 2002, 15, 3170-3187.	3.2	64
101	Simulation des changements climatiques au cours du XXIe siècle incluant l'ozone stratosphérique. Comptes Rendus - Geoscience, 2002, 334, 147-154.	1.2	40
102	La prévision du climat : de l'échelle saisonniÃre à l'échelle décennale. Comptes Rendus - Geoscience, 2002, 334, 1115-1127.	1.2	2
103	STOIC: a study of coupled model climatology and variability in tropical ocean regions. Climate Dynamics, 2002, 18, 403-420.	3.8	304
104	Potential impact of climate change on marine export production. Global Biogeochemical Cycles, 2001, 15, 81-99.	4.9	428
105	Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophysical Research Letters, 2001, 28, 3195-3198.	4.0	69
106	Oceanic Forcing of the Wintertime Low-Frequency Atmospheric Variability in the North Atlantic European Sector: A Study with the ARPEGE Model. Journal of Climate, 2001, 14, 4266-4291.	3.2	81
107	The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM. Climate Dynamics, 2001, 17, 589-599.	3.8	33
108	ENSIP: the El Niño simulation intercomparison project. Climate Dynamics, 2001, 18, 255-276.	3.8	255

#	Article	IF	CITATIONS
109	Mid latitude Atlantic SST influence on European winter climate variability in the NCEP Reanalysis. Climate Dynamics, 2001, 18, 331-344.	3.8	50
110	Modes of low-frequency climate variability and their relationships with land precipitation and surface temperature: application to the Northern Hemisphere winter climate. Stochastic Environmental Research and Risk Assessment, 2000, 14, 0339-0369.	4.0	11
111	The seasonal cycle in coupled ocean-atmosphere general circulation models. Climate Dynamics, 2000, 16, 775-787.	3.8	47
112	CoPIVEP: a theory-based analysis of coupled processes and interannual variability in the Equatorial Pacific in four coupled GCMs. Climate Dynamics, 2000, 16, 917-933.	3.8	0
113	Simulations couplées globales des changements climatiques associés à une augmentation de la teneur atmosphérique en CO2. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des PlanÃ'tes =, 1998, 326, 677-684.	0.2	4
114	Transient CO2Experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophysical Research Letters, 1998, 25, 2277-2280.	4.0	25
115	Sensitivity of Climate Drift to Atmospheric Physical Parameterizations in a Coupled Ocean–Atmosphere General Circulation Model. Journal of Climate, 1998, 11, 1633-1658.	3.2	27
116	Distributed Ocean–Atmosphere Modeling and Sensitivity to the Coupling Flux Precision: The CATHODe Project. Monthly Weather Review, 1998, 126, 1035-1053.	1.4	7
117	The Seasonal Cycle over the Tropical Pacific in Coupled Ocean–Atmosphere General Circulation Models. Monthly Weather Review, 1995, 123, 2825-2838.	1.4	497
118	Climatology and interannual variability simulated by the ARPEGE-OPA coupled model. Climate Dynamics, 1995, 11, 487-505.	3.8	37
119	Climatology and interannual variability simulated by the ARPEGE-OPA coupled model. Climate Dynamics, 1995, 11, 487-505.	3.8	6
120	OASIS : le couplage océan-atmosphère. La Météorologie, 1995, 8, 50.	0.5	15
121	Coupled Ocean-Atmosphere Simulations. , 1995, , 115-123.		O
122	Quantum Monte Carlo study of a proton in an electron gas. Journal of Statistical Physics, 1988, 52, 1221-1232.	1.2	6