## Hua Tan

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2451877/publications.pdf Version: 2024-02-01



ΗΠΑ ΤΑΝ

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon, 2013, 62, 88-96.                                                                                           | 5.4 | 138       |
| 2  | Metal–Organic Framework Enhances Aggregation-Induced Fluorescence of Chlortetracycline and the Application for Detection. Analytical Chemistry, 2019, 91, 5913-5921.                                                          | 3.2 | 130       |
| 3  | Fluorescence Enhancement, Blinking Suppression, and Gray States of Individual Semiconductor<br>Nanocrystals Close to Gold Nanoparticles. Nano Letters, 2010, 10, 4166-4174.                                                   | 4.5 | 113       |
| 4  | Formation of Ag2Se Nanotubes and Dendrite-like Structures from UV Irradiation of a CSe2/Ag<br>Colloidal Solution. Langmuir, 2006, 22, 9712-9717.                                                                              | 1.6 | 80        |
| 5  | Design and structure of nitrogen and oxygen co-doped carbon spheres with wrinkled nanocages as active material for supercapacitor application. Nano Energy, 2021, 90, 106540.                                                 | 8.2 | 71        |
| 6  | All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid. Chemical Engineering Journal, 2020, 379, 122360.                                                   | 6.6 | 61        |
| 7  | Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks<br>with High CO <sub>2</sub> Capture Capacity. ACS Sustainable Chemistry and Engineering, 2013, 1, 66-74.                   | 3.2 | 54        |
| 8  | Laser-based synthesis of core Ag-shell AgI nanoparticles. Chemical Physics Letters, 2005, 406, 289-293.                                                                                                                       | 1.2 | 37        |
| 9  | One-pot synthesis Of Cu/ZnO/ZnAl2O4 catalysts and their catalytic performance in glycerol hydrogenolysis. Catalysis Science and Technology, 2013, 3, 3360.                                                                    | 2.1 | 37        |
| 10 | ATRA-like alkylation–peroxidation of alkenes with trichloromethyl derivatives by the combination of <i>t</i> BuOOH and NEt <sub>3</sub> . Organic Chemistry Frontiers, 2018, 5, 3143-3147.                                    | 2.3 | 37        |
| 11 | Coreâ^'Shell and Hollow Nanocrystal Formation via Small Molecule Surface Photodissociation;<br>Ag@Ag2Se as an Example. Journal of Physical Chemistry B, 2006, 110, 15812-15816.                                               | 1.2 | 36        |
| 12 | Self-Organization of Spherical, Core–Shell Palladium Aggregates by Laser-Induced and Thermal<br>Decomposition of [Pd(PPh3)4]. Angewandte Chemie - International Edition, 2006, 45, 1120-1123.                                 | 7.2 | 31        |
| 13 | Size―and Shapeâ€Controlled Synthesis of Hexagonal Bipyramidal Crystals and Hollow Selfâ€Assembled<br>Alâ€MOF Spheres. ChemSusChem, 2014, 7, 529-535.                                                                          | 3.6 | 30        |
| 14 | Selective oxidation of glycerol to tartronic acid over Pt/N-doped mesoporous carbon with extra framework magnesium catalysts under base-free conditions. Chemical Communications, 2019, 55, 2620-2623.                        | 2.2 | 27        |
| 15 | Direct Functionalization of the Hydroxyl Group of the 6-Mercapto-1-hexanol (MCH) Ligand Attached to<br>Gold Nanoclusters. Journal of Physical Chemistry B, 2006, 110, 21690-21693.                                            | 1.2 | 24        |
| 16 | A Method to Access Symmetrical Tetrasubstituted Pyridines via Iodine and Ammonium Persulfate<br>Mediated [2+2+1+1] ycloaddition Reaction. Advanced Synthesis and Catalysis, 2017, 359, 1594-1598.                             | 2.1 | 23        |
| 17 | Production of biofuel intermediates from furfural via aldol condensation over K2O clusters<br>containing N-doped porous carbon materials with shape selectivity. Microporous and Mesoporous<br>Materials, 2019, 281, 101-109. | 2.2 | 20        |
| 18 | A simple route to water-soluble size-tunable monodispersed Pd nanoparticles from light<br>decomposition of Pd(PPh3)4. Chemical Physics Letters, 2006, 428, 352-355.                                                           | 1.2 | 19        |

Hua Tan

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Selective Oxidation of Glycerol to Glyceric Acid in Baseâ€Free Aqueous Solution at Room Temperature<br>Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide. ChemCatChem, 2016,<br>8, 1699-1707.             | 1.8 | 19        |
| 20 | I2–DMSQ–H2O: A Metal-Free Combination System for the Oxidative Addition of Alkynes to Access<br>(E)-α-Iodo-β-methylsulfonylalkenes. Journal of Organic Chemistry, 2019, 84, 15662-15668.                                             | 1.7 | 17        |
| 21 | Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their<br>enhanced catalytic performance during ammonia decomposition. Catalysis Communications, 2012, 26,<br>248-252.                      | 1.6 | 16        |
| 22 | High Performance Infrared Plasmonic Metamaterial Absorbers and Their Applications to Thin-film Sensing. Plasmonics, 2016, 11, 1557-1563.                                                                                             | 1.8 | 16        |
| 23 | Laboratory injection molder for the fabrication of polymeric porous poly-epsilon-caprolactone<br>scaffolds for preliminary mesenchymal stem cells tissue engineering applications. Microelectronic<br>Engineering, 2017, 175, 12-16. | 1.1 | 16        |
| 24 | Highly Selective Synthesis of 2- <i>tert</i> -Butoxy-1-Arylethanones via Copper(I)-Catalyzed<br>Oxidation/ <i>tert</i> -Butoxylation of Aryl Olefins with TBHP. Journal of Organic Chemistry, 2020, 85,<br>3929-3935.                | 1.7 | 15        |
| 25 | Nitrogen doped carbon spheres with wrinkled cages for the selective oxidation of<br>5-hydroxymethylfurfural to 5-formyl-2-furancarboxylic acid. Chemical Communications, 2021, 57,<br>2005-2008.                                     | 2.2 | 14        |
| 26 | Transferring Complementary Target DNA from Aqueous Solutions onto Solid Surfaces by Using Affinity Microcontact Printing. Langmuir, 2007, 23, 8607-8613.                                                                             | 1.6 | 12        |
| 27 | Preparation of 1,2-Oxazetidines from Styrenes and Arylamines via a Peroxide-Mediated [2 + 1 + 1]<br>Cycloaddition Reaction. Organic Letters, 2017, 19, 5830-5832.                                                                    | 2.4 | 10        |
| 28 | Selective oxidation of glycerol to dihydroxyacetone over N-doped porous carbon stabilized CuxO supported Au catalysts. Molecular Catalysis, 2020, 498, 111243.                                                                       | 1.0 | 9         |
| 29 | Superoxide anion turns on the fluorescence of carbon dots-ferric complex for sensing.<br>Microchemical Journal, 2021, 168, 106412.                                                                                                   | 2.3 | 8         |
| 30 | Preparation and Characterization of Cr(CO)4dpp (Chromium Tetracarbonyl 2,3-Bis(2â€~-pyridyl)pyrazine)<br>Adsorbed on Silver Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 19657-19663.                                  | 1.2 | 7         |
| 31 | Facile preparation of N-doped graphitic carbon encapsulated nickel catalysts for transfer<br>hydrogenolysis of lignin β-O-4 model compounds to aromatics. Sustainable Energy and Fuels, 2022, 6,<br>2745-2754.                       | 2.5 | 7         |
| 32 | Synthesis of α-sulfonyloxyketones via iodobenzene diacetate (PIDA)-mediated oxysulfonyloxylation of alkynes with sulfonic acids. RSC Advances, 2017, 7, 54017-54020.                                                                 | 1.7 | 3         |
| 33 | A new 3D Ag( <scp>i</scp> )-based high-energy metal organic frameworks (HE-MOFs): synthesis, crystal structure and explosive performance. New Journal of Chemistry, 2021, 45, 3552-3558.                                             | 1.4 | 3         |
| 34 | Optical spectroscopy of single semiconductor nanocrystals close to gold nanoparticles. , 2012, , .                                                                                                                                   |     | 1         |
| 35 | Effect of SiO <sub>2</sub> @PEGMA Composites on Mechanical Properties of Oil Well Cement. ACS<br>Omega, 2022, 7, 24012-24019.                                                                                                        | 1.6 | 0         |