
Jikai Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2451807/publications.pdf Version: 2024-02-01

Ιικλι Ζηλο

#	Article	IF	CITATIONS
1	Effects of particle size on biomass pretreatment and hydrolysis performances in bioethanol conversion. Biomass Conversion and Biorefinery, 2023, 13, 13023-13036.	2.9	4
2	Experimental and Technoeconomic Assessment of Monosaccharide and Furan Production under High Biomass Loading without Solid–Liquid Separation. ACS Sustainable Chemistry and Engineering, 2022, 10, 1972-1982.	3.2	7
3	Comparative evaluation of physicochemical and fermentative responses of three sorghum varieties from dryland and irrigated land and the properties of proteins from distillers' grains. Journal of Cereal Science, 2022, 104, 103432.	1.8	2
4	Production of distilled spirits using grain sorghum through liquid fermentation. Journal of Agriculture and Food Research, 2022, 9, 100314.	1.2	5
5	An integrated deep eutectic solvent-ionic liquid-metal catalyst system for lignin and 5-hydroxymethylfurfural production from lignocellulosic biomass: Technoeconomic analysis. Bioresource Technology, 2022, 356, 127277.	4.8	18
6	Hempseed as a nutritious and healthy human food or animal feed source: a review. International Journal of Food Science and Technology, 2021, 56, 530-543.	1.3	41
7	Effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed. Journal of Agriculture and Food Research, 2021, 3, 100119.	1.2	2
8	Potential of Wheat Milling Byproducts to Produce Fermentable Sugars via Mild Ethanol–Alkaline Pretreatment. ACS Sustainable Chemistry and Engineering, 2021, 9, 3626-3632.	3.2	7
9	Characterization of Four Chinese Bread Wheat Varieties over Five Years. ACS Food Science & Technology, 2021, 1, 770-777.	1.3	0
10	Proteins in dried distillers' grains with solubles: A review of animal feed value and potential nonâ€food uses. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 957-968.	0.8	5
11	Universal Peptide Hydrogel for Scalable Physiological Formation and Bioprinting of 3D Spheroids from Human Induced Pluripotent Stem Cells. Advanced Functional Materials, 2021, 31, 2104046.	7.8	13
12	Technoeconomic Analysis of Multiple-Stream Ethanol and Lignin Production from Lignocellulosic Biomass: Insights into the Chemical Selection and Process Integration. ACS Sustainable Chemistry and Engineering, 2021, 9, 13640-13652.	3.2	18
13	Minimizing water consumption for sugar and lignin recovery via the integration of acid and alkali pretreated biomass and their mixed filtrate without post-washing. Bioresource Technology, 2021, 337, 125389.	4.8	16
14	Effects of post-washing on pretreated biomass and hydrolysis of the mixture of acetic acid and sodium hydroxide pretreated biomass and their mixed filtrate. Bioresource Technology, 2021, 339, 125605.	4.8	14
15	Lignin, sugar, and furan production of industrial hemp biomass via an integrated process. Industrial Crops and Products, 2021, 172, 114049.	2.5	9
16	Two Nonnegligible Factors Influencing Lignocellulosic Biomass Valorization: Filtration Method after Pretreatment and Solid Loading during Enzymatic Hydrolysis. Energy & Fuels, 2021, 35, 1546-1556.	2.5	12
17	High Ethanol Concentration (77 g/L) of Industrial Hemp Biomass Achieved Through Optimizing the Relationship between Ethanol Yield/Concentration and Solid Loading. ACS Omega, 2020, 5, 21913-21921.	1.6	23
18	Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel, 2020, 281, 118725.	3.4	77

Jikai Zhao

#	Article	IF	CITATIONS
19	Integrating bran starch hydrolysates with alkaline pretreated soft wheat bran to boost sugar concentration. Bioresource Technology, 2020, 302, 122826.	4.8	28
20	Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresource Technology, 2020, 309, 123383.	4.8	63
21	Production of biscuits by substitution with different ratios of yellow pea flour. Grain & Oil Science and Technology, 2019, 2, 91-96.	2.0	18
22	DON reduction of wheat grain without compromising the lab-scale milling properties of flour. Grain & Oil Science and Technology, 2019, 2, 62-66.	2.0	4