
Guangren Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2450879/publications.pdf Version: 2024-02-01

CHANCDEN YU

#	Article	IF	CITATIONS
1	Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 2017, 122, 724-745.	8.8	252
2	A review of extractive desulfurization of fuel oils using ionic liquids. RSC Advances, 2014, 4, 35302-35317.	3.6	249
3	Viscosity of ionic liquids: Database, observation, and quantitative structureâ€property relationship analysis. AICHE Journal, 2012, 58, 2885-2899.	3.6	235
4	Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids. Separation and Purification Technology, 2014, 133, 187-193.	7.9	148
5	Oxidative desulfurization of fuel oils using ionic liquids: A review. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 84-97.	5.3	148
6	Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresource Technology, 2018, 263, 325-333.	9.6	140
7	Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ionic liquids. Green Chemistry, 2010, 12, 2030.	9.0	123
8	Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride. Journal of Molecular Catalysis A, 2012, 359, 8-13.	4.8	114
9	Deep Desulfurization of Fuel Oils Using Low-Viscosity 1-Ethyl-3-methylimidazolium Dicyanamide Ionic Liquid. Industrial & Engineering Chemistry Research, 2011, 50, 2236-2244.	3.7	93
10	Structure, interaction and property of aminoâ€functionalized imidazolium ILs by molecular dynamics simulation and Ab initio calculation. AICHE Journal, 2007, 53, 3210-3221.	3.6	86
11	BrÃ,nsted–Lewis Acidic Ionic Liquids and Application in Oxidative Desulfurization of Diesel Fuel. Energy & Fuels, 2015, 29, 2998-3003.	5.1	80
12	Using functional acidic ionic liquids as both extractant and catalyst in oxidative desulfurization of diesel fuel: An investigation of real feedstock. Fuel, 2015, 146, 6-12.	6.4	76
13	Deep Oxidative Desulfurization of Diesel Fuels by Acidic Ionic Liquids. Industrial & Engineering Chemistry Research, 2011, 50, 11690-11697.	3.7	75
14	A Force Field for Molecular Simulation of Tetrabutylphosphonium Amino Acid Ionic Liquids. Journal of Physical Chemistry B, 2007, 111, 7078-7084.	2.6	74
15	Extractive denitrogenation of fuel oils with dicyanamide-based ionic liquids. Green Chemistry, 2011, 13, 3300.	9.0	74
16	A process simulation study of CO 2 capture by ionic liquids. International Journal of Greenhouse Gas Control, 2017, 58, 223-231.	4.6	69
17	New absorbents for hydrogen sulfide: Deep eutectic solvents of tetrabutylammonium bromide/carboxylic acids and choline chloride/carboxylic acids. Separation and Purification Technology, 2019, 224, 281-289.	7.9	69
18	Design of Task-Specific Ionic Liquids for Capturing CO2:Â A Molecular Orbital Study. Industrial & Engineering Chemistry Research, 2006, 45, 2875-2880.	3.7	68

GUANGREN YU

#	Article	IF	CITATIONS
19	Data and QSPR study for viscosity of imidazolium-based ionic liquids. Fluid Phase Equilibria, 2011, 300, 95-104.	2.5	67
20	SO ₂ Capture by Guanidinium-Based Ionic Liquids: A Theoretical Study. Journal of Physical Chemistry B, 2011, 115, 3466-3477.	2.6	63
21	Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector – prospects and challenges. RSC Advances, 2016, 6, 32140-32170.	3.6	62
22	Extractive denitrogenation of fuel oils using ionic liquids: a review. RSC Advances, 2016, 6, 93932-93946.	3.6	61
23	Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion. Bioresource Technology, 2016, 203, 166-172.	9.6	61
24	A combination desulfurization method for diesel fuel: Oxidation by ionic liquid with extraction by solvent. Fuel, 2018, 224, 545-551.	6.4	57
25	Desulfurization of fuel oils: Mutual solubility of ionic liquids and fuel oil. Fuel, 2016, 173, 164-171.	6.4	54
26	Molecular Simulation of Guanidinium-Based Ionic Liquids. Journal of Physical Chemistry B, 2007, 111, 5658-5668.	2.6	53
27	Effect of small amount of water on the dynamics properties and microstructures of ionic liquids. AICHE Journal, 2017, 63, 2248-2256.	3.6	48
28	High Solubilities of Small Hydrocarbons in Trihexyl Tetradecylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate. Journal of Physical Chemistry B, 2013, 117, 10534-10539.	2.6	45
29	Isobaric vapor–liquid equilibrium for methanol+dimethyl carbonate+phosphoric-based ionic liquids. Fluid Phase Equilibria, 2013, 352, 47-53.	2.5	44
30	Desulfurization of Fuel Oil: Conductor-like Screening Model for Real Solvents Study on Capacity of Ionic Liquids for Thiophene and Dibenzothiophene. Industrial & Engineering Chemistry Research, 2015, 54, 9421-9430.	3.7	43
31	Coupled Oxidation-Extraction Desulfurization: A Novel Evaluation for Diesel Fuel. ACS Sustainable Chemistry and Engineering, 2019, 7, 5660-5668.	6.7	40
32	Insight into the cation–anion interaction in 1,1,3,3-tetramethylguanidinium lactate ionic liquid. Fluid Phase Equilibria, 2007, 255, 86-92.	2.5	36
33	Molecular simulations of phosphonium-based ionic liquid. Molecular Simulation, 2010, 36, 79-86.	2.0	36
34	Synthesis of new crosslinked porous ammonium-based poly(ionic liquid) and application in CO ₂ adsorption. Polymer Engineering and Science, 2014, 54, 59-63.	3.1	35
35	QSPR study on the viscosity of bis(trifluoromethylsulfonyl)imide-based ionic liquids. Journal of Molecular Liquids, 2013, 184, 51-59.	4.9	33
36	Isobaric Vapor–Liquid Equilibrium for Methanol + Dimethyl Carbonate + 1-Butyl-3-methylimidazolium Dibutylphosphate. Journal of Chemical & Engineering Data, 2013, 58, 1186-1192.	1.9	33

GUANGREN YU

#	Article	IF	CITATIONS
37	Extractive denitrogenation of shale oil using imidazolium ionic liquids. Green Energy and Environment, 2020, 5, 173-182.	8.7	31
38	Isobaric Vapor–Liquid Equilibrium for Acetone + Methanol + Phosphate Ionic Liquids. Journal of Chemical & Engineering Data, 2015, 60, 612-620.	1.9	29
39	Pretreatment of <i>Miscanthus×giganteus</i> using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. Journal of Chemical Technology and Biotechnology, 2014, 89, 698-706.	3.2	28
40	Extractive Desulfurization of Fuel Oils with Dicyano(nitroso)methanide-based Ionic Liquids. Separation Science and Technology, 2015, 50, 1166-1174.	2.5	28
41	Novel ionic liquids phase change solvents for CO2 capture. International Journal of Greenhouse Gas Control, 2020, 98, 103068.	4.6	25
42	Functional Solution Composed of Cu(I) Salt and Ionic Liquids to Separate Propylene from Propane. Industrial & Engineering Chemistry Research, 2014, 53, 13430-13435.	3.7	23
43	CO 2 absorption by binary mixture of ionic liquids-monoethanolamine at lower pressure. International Journal of Greenhouse Gas Control, 2016, 44, 52-58.	4.6	21
44	Determination of Vapor–Liquid Equilibrium of Methyl Acetate + Methanol + 1-Alkyl-3-methylimidazolium Dialkylphosphates at 101.3 kPa. Journal of Chemical & Engineering Data, 2017, 62, 816-824.	1.9	21
45	Separation of propylene and propane by alkylimidazolium thiocyanate ionic liquids with Cu + salt. Separation and Purification Technology, 2015, 156, 356-362.	7.9	20
46	Desulfurization of Real Fuel Oils by Extraction with Ionic Liquids. Separation Science and Technology, 2013, 48, 2582-2588.	2.5	19
47	Synthesis of polymeric ionic liquids material and application in CO2 adsorption. Journal of Energy Chemistry, 2017, 26, 909-918.	12.9	19
48	Glycolysis of polyethylene terephthalate: Magnetic nanoparticle CoFe2O4 catalyst modified using ionic liquid as surfactant. European Polymer Journal, 2021, 155, 110590.	5.4	18
49	Fabrication of magnetic bimetallic Co–Zn based zeolitic imidazolate frameworks composites as catalyst of glycolysis of mixed plastic. Fuel, 2021, 304, 121397.	6.4	17
50	Cu(I)-Based Ionic Liquids as Potential Absorbents to Separate Propylene and Propane. Separation Science and Technology, 2013, 48, 2317-2323.	2.5	16
51	Effect of impeller on sinking and floating behavior of suspending particle materials in stirred tank: A computational fluid dynamics and factorial design study. Advanced Powder Technology, 2017, 28, 1159-1169.	4.1	16
52	Stepped enhancement of <scp>CO₂</scp> adsorption and separation in <scp>ILâ€ZIFâ€IL</scp> composites with shellâ€interlayerâ€core structure. AICHE Journal, 2021, 67, e17112.	3.6	16
53	Vaporization enthalpy and cluster species in gas phase of 1,1,3,3â€ŧetramethylguanidiniumâ€based ionic liquids from computer simulations. AICHE Journal, 2011, 57, 507-516.	3.6	15
54	N-methyl-2-pyrrolidonium-based Brönsted-Lewis acidic ionic liquids as catalysts for the hydrolysis of cellulose. Science China Chemistry, 2016, 59, 564-570.	8.2	14

GUANGREN YU

#	Article	IF	CITATIONS
55	Cholinium amino acids-glycerol mixtures: New class of solvents for pretreating wheat straw to facilitate enzymatic hydrolysis. Bioresource Technology, 2017, 245, 625-632.	9.6	12
56	Experimental investigation of hydrodynamic parameters and bubble characteristics in CO2 absorption column using pure ionic liquid and binary mixtures: Effect of porous sparger and operating conditions. Chemical Engineering Science, 2021, 229, 116041.	3.8	12
57	Compressible gases transport through porous membrane: A modified dusty gas model. Journal of Membrane Science, 2011, 379, 200-206.	8.2	11
58	Hydrodynamic modeling of ionic liquids and conventional amine solvents in bubble column. Chemical Engineering Research and Design, 2018, 129, 356-375.	5.6	11
59	Oxidative Desulfurization of Gasoline by Ionic Liquids Coupled with Extraction by Organic Solvents. Journal of the Brazilian Chemical Society, 2015, , .	0.6	10
60	Separation of propylene and propane by functional mixture of imidazolintum chloride ionic liquid – Organic solvent – Cuprous salt. Separation and Purification Technology, 2017, 175, 177-184.	7.9	10
61	Mutual solubility of acidic ionic liquid and model gasoline of n-octane+1-octene+toluene. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69, 78-84.	5.3	9
62	Numerical modeling for characterization of CO2 bubble formation through submerged orifice in ionic liquids. Chemical Engineering Research and Design, 2019, 146, 104-116.	5.6	8
63	Cluster Formation and Its Role in the Elimination of Azeotrope of the Acetone–Methanol Mixture by Ionic Liquids. Industrial & Engineering Chemistry Research, 2020, 59, 13271-13282.	3.7	8
64	Extractive desulfurization of gasoline using binary solvent of bronsted-based ionic liquids and non-volatile organic compound. Chemical Papers, 2019, 73, 2757-2765.	2.2	7
65	Reduction/reoxidation of a multicomponent molybdate catalyst for propylene ammoxidation. Thermochimica Acta, 2009, 486, 20-26.	2.7	5
66	Elimination of the azeotropic point of acetone and methanol by 1,3-dimethylimidazolium dimethylphosphate: an ab initio calculation study. Journal of Molecular Modeling, 2017, 23, 74.	1.8	4
67	Desulphurization of Fuel Oils Using Ionic Liquids. Advances in Chemical and Materials Engineering Book Series, 2016, , 254-284.	0.3	4
68	Recovery of ionic liquids from methanol by pervaporation with polydimethylsiloxane membrane. Chemical Papers, 2020, 74, 1331-1337.	2.2	3
69	Separation of propylene and propane by functional mixture of imidazolium thiocyanate ionic liquidâ€organic solventâ€cuprous salt. Canadian Journal of Chemical Engineering, 2021, 99, .	1.7	2
70	Intrinsic kinetics of reoxidation reaction for a multicomponent molybdate catalyst by thermal analysis method. Catalysis Communications, 2009, 10, 1066-1069.	3.3	1
71	A coupled catalyst composed of CoFe2O4 magnetic nanoparticle and [HMIM]Br-FeCl3 to intensify the oxidative desulfurization of FCC diesel. Green Chemical Engineering, 2021, 2, 441-449.	6.3	1