Shi-Yong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2450836/publications.pdf

Version: 2024-02-01

		28190	13727
175	17,719	55	129
papers	citations	h-index	g-index
182	182	182	31215
102	102	102	31213
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Activation of Akt and eIF4E Survival Pathways by Rapamycin-Mediated Mammalian Target of Rapamycin Inhibition. Cancer Research, 2005, 65, 7052-7058.	0.4	759
4	Apoptosis as a Novel Target for Cancer Chemoprevention. Journal of the National Cancer Institute, 2004, 96, 662-672.	3.0	463
5	Retinoids and their receptors in cancer development and chemoprevention. Critical Reviews in Oncology/Hematology, 2002, 41, 41-55.	2.0	293
6	Death Receptor Regulation and Celecoxib-Induced Apoptosis in Human Lung Cancer Cells. Journal of the National Cancer Institute, 2004, 96, 1769-1780.	3.0	240
7	N-acetylcysteine, reactive oxygen species and beyond. Cancer Biology and Therapy, 2010, 9, 109-110.	1.5	225
8	MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. Journal of Hematology and Oncology, 2019, 12, 63.	6.9	181
9	c-Jun NH2-Terminal Kinase-Mediated Up-regulation of Death Receptor 5 Contributes to Induction of Apoptosis by the Novel Synthetic Triterpenoid Methyl-2-Cyano-3,12-Dioxooleana-1, 9-Dien-28-Oate in Human Lung Cancer Cells. Cancer Research, 2004, 64, 7570-7578.	0.4	161
10	p53 Upregulates Death Receptor 4 Expression through an Intronic p53 Binding Site. Cancer Research, 2004, 64, 5078-5083.	0.4	158
11	Enhancing Mammalian Target of Rapamycin (mTOR)–Targeted Cancer Therapy by Preventing mTOR/Raptor Inhibition-Initiated, mTOR/Rictor-Independent Akt Activation. Cancer Research, 2008, 68, 7409-7418.	0.4	152
12	Inhibition of lκB Kinase-Nuclear Factor-κB Signaling Pathway by 3,5-Bis(2-flurobenzylidene)piperidin-4-one (EF24), a Novel Monoketone Analog of Curcumin. Molecular Pharmacology, 2008, 74, 654-661.	1.0	151
13	The Proteasome Inhibitor PS-341 (Bortezomib) Up-Regulates DR5 Expression Leading to Induction of Apoptosis and Enhancement of TRAIL-Induced Apoptosis Despite Up-Regulation of c-FLIP and Survivin Expression in Human NSCLC Cells. Cancer Research, 2007, 67, 4981-4988.	0.4	150
14	Inhibition of Mammalian Target of Rapamycin Induces Phosphatidylinositol 3-Kinase-Dependent and Mnk-Mediated Eukaryotic Translation Initiation Factor 4E Phosphorylation. Molecular and Cellular Biology, 2007, 27, 7405-7413.	1.1	137
15	Down-regulation of 14-3-3ζ suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 162-167.	3.3	137
16	Perifosine Inhibits Mammalian Target of Rapamycin Signaling through Facilitating Degradation of Major Components in the mTOR Axis and Induces Autophagy. Cancer Research, 2009, 69, 8967-8976.	0.4	137
17	Niclosamide Overcomes Acquired Resistance to Erlotinib through Suppression of STAT3 in Non–Small Cell Lung Cancer. Molecular Cancer Therapeutics, 2013, 12, 2200-2212.	1.9	137
18	Met gene amplification and protein hyperactivation is a mechanism of resistance to both first and third generation EGFR inhibitors in lung cancer treatment. Cancer Letters, 2016, 380, 494-504.	3.2	137

#	Article	IF	Citations
19	p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. Journal of Clinical Investigation, 2010, 120, 1165-1177.	3.9	133
20	mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Letters, 2013, 340, 1-8.	3.2	128
21	Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. Journal of Cellular Physiology, 2001, 188, 98-105.	2.0	126
22	Overexpression of Bcl2 Blocks TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis in Human Lung Cancer Cells. Biochemical and Biophysical Research Communications, 2001, 280, 788-797.	1.0	125
23	Tumor Growth Inhibition by Simultaneously Blocking Epidermal Growth Factor Receptor and Cyclooxygenase-2 in a Xenograft Model. Clinical Cancer Research, 2005, 11, 6261-6269.	3.2	123
24	Mechanisms of apoptosis induced by the synthetic retinoid CD437 in human non-small cell lung carcinoma cells. Oncogene, 1999, 18, 2357-2365.	2.6	110
25	Coupling of Endoplasmic Reticulum Stress to CDDO-Me–Induced Up-regulation of Death Receptor 5 via a CHOP–Dependent Mechanism Involving JNK Activation. Cancer Research, 2008, 68, 7484-7492.	0.4	109
26	The Glycolytic Inhibitor 2-Deoxyglucose Activates Multiple Prosurvival Pathways through IGF1R. Journal of Biological Chemistry, 2009, 284, 23225-23233.	1.6	103
27	Overcoming Acquired Resistance to AZD9291, A Third-Generation EGFR Inhibitor, through Modulation of MEK/ERK-Dependent Bim and Mcl-1 Degradation. Clinical Cancer Research, 2017, 23, 6567-6579.	3.2	103
28	Modulation of death receptors by cancer therapeutic agents. Cancer Biology and Therapy, 2008, 7, 163-173.	1.5	102
29	Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biology and Therapy, 2009, 8, 1463-1469.	1.5	97
30	Vitamin C Inactivates the Proteasome Inhibitor PS-341 in Human Cancer Cells. Clinical Cancer Research, 2006, 12, 273-280.	3.2	96
31	Evidence That Retinoic Acid Receptor \hat{l}^2 Induction by Retinoids Is Important for Tumor Cell Growth Inhibition. Journal of Biological Chemistry, 2000, 275, 17149-17153.	1.6	94
32	YAP1 Expression in SCLC Defines a Distinct Subtype With T-cell–Inflamed Phenotype. Journal of Thoracic Oncology, 2021, 16, 464-476.	0.5	93
33	Proteasome Inhibitor PS-341 (Bortezomib) Induces Calpain-dependent ll®l1± Degradation. Journal of Biological Chemistry, 2010, 285, 16096-16104.	1.6	91
34	Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 1460-1469.	1.9	90
35	The alkylphospholipid perifosine induces apoptosis of human lung cancer cells requiring inhibition of Akt and activation of the extrinsic apoptotic pathway. Molecular Cancer Therapeutics, 2007, 6, 2029-2038.	1.9	87
36	Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors' anticancer efficacy. Cancer Biology and Therapy, 2008, 7, 1952-1958.	1.5	86

#	Article	IF	CITATIONS
37	Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nature Cell Biology, 2007, 9, 1199-1207.	4.6	82
38	The eIF4E/eIF4G Interaction Inhibitor 4EGI-1 Augments TRAIL-Mediated Apoptosis through c-FLIP Down-regulation and DR5 Induction Independent of Inhibition of Cap-Dependent Protein Translation. Neoplasia, 2010, 12, 346-IN7.	2.3	81
39	Activation of Nuclear Factor- \hat{P} B Contributes to Induction of Death Receptors and Apoptosis by the Synthetic Retinoid CD437 in DU145 Human Prostate Cancer Cells. Cancer Research, 2005, 65, 6354-6363.	0.4	79
40	2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition. Molecular Cancer Therapeutics, 2008, 7, 809-817.	1.9	79
41	Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. Journal of Translational Medicine, 2016, 14, 111.	1.8	78
42	Poly (<scp>ADP</scp>) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Medicine, 2014, 3, 1579-1594.	1.3	74
43	Decoy Receptor 2 (DcR2) Is a p53 Target Gene and Regulates Chemosensitivity. Cancer Research, 2005, 65, 9169-9175.	0.4	73
44	Evidence that the human death receptor 4 is regulated by activator protein 1. Oncogene, 2002, 21, 3121-3129.	2.6	70
45	Cellular FLICE-Inhibitory Protein Down-regulation Contributes to Celecoxib-Induced Apoptosis in Human Lung Cancer Cells. Cancer Research, 2006, 66, 11115-11119.	0.4	69
46	Protein Phosphatase 2A Negatively Regulates Eukaryotic Initiation Factor 4E Phosphorylation and eIF4F Assembly through Direct Dephosphorylation of Mnk and eIF4E. Neoplasia, 2010, 12, 848-855.	2.3	69
47	LKB1 Is Necessary for Akt-Mediated Phosphorylation of Proapoptotic Proteins. Cancer Research, 2008, 68, 7270-7277.	0.4	68
48	The synthetic retinoid CD437 selectively induces apoptosis in human lung cancer cells while sparing normal human lung epithelial cells. Cancer Research, 2002, 62, 2430-6.	0.4	67
49	The Combination of RAD001 and NVP-BEZ235 Exerts Synergistic Anticancer Activity against Non-Small Cell Lung Cancer In Vitro and In Vivo. PLoS ONE, 2011, 6, e20899.	1.1	64
50	Therapeutic Potential and Molecular Mechanism of a Novel, Potent, Nonpeptide, Smac Mimetic SM-164 in Combination with TRAIL for Cancer Treatment. Molecular Cancer Therapeutics, 2011, 10, 902-914.	1.9	64
51	MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells. Blood, 2014, 123, 3269-3276.	0.6	64
52	Induction of apoptosis in human non-small cell lung carcinoma cells by the novel synthetic retinoid CD437., 1997, 173, 279-284.		63
53	Implication of multiple mechanisms in apoptosis induced by the synthetic retinoid CD437 in human prostate carcinoma cells. Oncogene, 2000, 19, 4513-4522.	2.6	63
54	Novel Small-Molecule Inhibitors of Bcl-XL to Treat Lung Cancer. Cancer Research, 2013, 73, 5485-5496.	0.4	62

#	Article	IF	Citations
55	Rictor Undergoes Glycogen Synthase Kinase 3 (GSK3)-dependent, FBXW7-mediated Ubiquitination and Proteasomal Degradation. Journal of Biological Chemistry, 2015, 290, 14120-14129.	1.6	59
56	The E3 ubiquitin ligases \hat{l}^2 -TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis. Molecular Cancer, 2013, 12, 146.	7.9	58
57	Enhancing mTOR-targeted cancer therapy. Expert Opinion on Therapeutic Targets, 2009, 13, 1193-1203.	1.5	56
58	ERK/Ribosomal S6 Kinase (RSK) Signaling Positively Regulates Death Receptor 5 Expression through Co-activation of CHOP and Elk1. Journal of Biological Chemistry, 2010, 285, 41310-41319.	1.6	56
59	Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. Cancer Biology and Therapy, 2011, 12, 549-555.	1.5	56
60	Depletion of ntracellular Glutathione Contributes to JNK-Mediated Death Receptor 5 Upregulation and Apoptosis Induction by the Novel Synthetic Triterpenoid Methyl-2-cyano-3, 12-dioxooleana-1, 9-dien-28-oate (CDDO-Me)1. Cancer Biology and Therapy, 2006, 5, 492-497.	1.5	54
61	The combination of RAD001 and NVP-BKM120 synergistically inhibits the growth of lung cancer in vitro and in vivo. Cancer Letters, 2012, 325, 139-146.	3.2	54
62	PPAR \hat{I}^3 ligands enhance TRAIL-induced apoptosis through DR5 upregulation and c-FLIP downregulation in human lung cancer cells. Cancer Biology and Therapy, 2007, 6, 99-106.	1.5	53
63	NNK promotes migration and invasion of lung cancer cells through activation of c-Src/PKC \hat{l}^1 /FAK loop. Cancer Letters, 2012, 318, 106-113.	3.2	53
64	Phase 1 and pharmacokinetic study of everolimus in combination with cetuximab and carboplatin for recurrent/metastatic squamous cell carcinoma of the head and neck. Cancer, 2014, 120, 3940-3951.	2.0	53
65	Inhibition of mTOR complex $1/p70$ S6 kinase signaling elevates PD-L1 levels in human cancer cells through enhancing protein stabilization accompanied with enhanced \hat{I}^2 -TrCP degradation. Oncogene, 2019, 38, 6270-6282.	2.6	53
66	Elevated expression of eukaryotic translation initiation factor 4E is associated with proliferation, invasion and acquired resistance to erlotinib in lung cancer. Cancer Biology and Therapy, 2012, 13, 272-280.	1.5	52
67	Dual Mechanisms of Action of the Retinoid CD437: Nuclear Retinoic Acid Receptor-Mediated Suppression of Squamous Differentiation and Receptor-Independent Induction of Apoptosis in UMSCC22B Human Head and Neck Squamous Cell Carcinoma Cells. Molecular Pharmacology, 2000, 58, 508-514.	1.0	51
68	The Farnesyltransferase Inhibitor Lonafarnib Induces CCAAT/Enhancer-binding Protein Homologous Protein-dependent Expression of Death Receptor 5, Leading to Induction of Apoptosis in Human Cancer Cells. Journal of Biological Chemistry, 2007, 282, 18800-18809.	1.6	49
69	c-FLIP downregulation contributes to apoptosis induction by the novel synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9-dien-28-oate (CDDO-Me) in human lung cancer cells. Cancer Biology and Therapy, 2007, 6, 1614-1620.	1.5	48
70	Involvement of c-FLIP and survivin down-regulation in flexible heteroarotinoid-induced apoptosis and enhancement of TRAIL-initiated apoptosis in lung cancer cells. Molecular Cancer Therapeutics, 2008, 7, 3556-3565.	1.9	48
71	c-Myc Suppression of DNA Double-strand Break Repair. Neoplasia, 2012, 14, 1190-IN35.	2.3	48
72	mTOR Complex 2 Stabilizes Mcl-1 Protein by Suppressing Its Glycogen Synthase Kinase 3-Dependent and SCF-FBXW7-Mediated Degradation. Molecular and Cellular Biology, 2015, 35, 2344-2355.	1.1	48

#	Article	IF	CITATIONS
73	The natural product honokiol preferentially inhibits cellular FLICE-inhibitory protein and augments death receptor–induced apoptosis. Molecular Cancer Therapeutics, 2008, 7, 2212-2223.	1.9	47
74	Protein Phosphatase 2A and DNA-dependent Protein Kinase Are Involved in Mediating Rapamycin-induced Akt Phosphorylation. Journal of Biological Chemistry, 2013, 288, 13215-13224.	1.6	47
75	c-FLIP Degradation Mediates Sensitization of Pancreatic Cancer Cells to TRAIL-Induced Apoptosis by the Histone Deacetylase Inhibitor LBH589. PLoS ONE, 2010, 5, e10376.	1.1	46
76	CCAAT/Enhancer Binding Protein Homologous Protein-Dependent Death Receptor 5 Induction and Ubiquitin/Proteasome-Mediated Cellular FLICE-Inhibitory Protein Down-Regulation Contribute to Enhancement of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis by Dimethyl-Celecoxib in Human Non–Small-Cell Lung Cancer Cells. Molecular Pharmacology, 2007, 72,	1.0	45
77	1269-1279. Identification of a novel synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate, that potently induces caspase-mediated apoptosis in human lung cancer cells. Molecular Cancer Therapeutics, 2002, 1, 177-84.	1.9	45
78	CAAT/Enhancer Binding Protein Homologous Protein–Dependent Death Receptor 5 Induction Is a Major Component of SHetA2-Induced Apoptosis in Lung Cancer Cells. Cancer Research, 2008, 68, 5335-5344.	0.4	44
79	Retinoic Acid Enhances TRAIL-Induced Apoptosis in Cancer Cells by Upregulating TRAIL Receptor 1 Expression. Cancer Research, 2011, 71, 5245-5254.	0.4	41
80	Analysis of Death Receptor 5 and Caspase-8 Expression in Primary and Metastatic Head and Neck Squamous Cell Carcinoma and Their Prognostic Impact. PLoS ONE, 2010, 5, e12178.	1.1	41
81	The NEDD8-Activating Enzyme Inhibitor, MLN4924, Cooperates with TRAIL to Augment Apoptosis through Facilitating c-FLIP Degradation in Head and Neck Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 2415-2425.	1.9	40
82	Rapamycin Induces Bad Phosphorylation in Association with Its Resistance to Human Lung Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 45-56.	1.9	40
83	Maintaining Glycogen Synthase Kinase-3 Activity Is Critical for mTOR Kinase Inhibitors to Inhibit Cancer Cell Growth. Cancer Research, 2014, 74, 2555-2568.	0.4	40
84	Enhancing therapeutic efficacy of the MEK inhibitor, MEK162, by blocking autophagy or inhibiting PI3K/Akt signaling in human lung cancer cells. Cancer Letters, 2015, 364, 70-78.	3.2	40
85	ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptorâ€mutant non–small cell lung cancer cells to osimertinib. Cancer, 2020, 126, 1339-1350.	2.0	40
86	Perifosine Synergistically Enhances TRAIL-Induced Myeloma Cell Apoptosis via Up-Regulation of Death Receptors. Clinical Cancer Research, 2008, 14, 5090-5098.	3.2	38
87	Drozitumab, a Human Antibody to Death Receptor 5, Has Potent Antitumor Activity against Rhabdomyosarcoma with the Expression of Caspase-8 Predictive of Response. Clinical Cancer Research, 2011, 17, 3181-3192.	3.2	38
88	The novel proteasome inhibitor carfilzomib activates and enhances extrinsic apoptosis involving stabilization of death receptor 5. Oncotarget, 2015, 6, 17532-17542.	0.8	38
89	Phase 1 and pharmacokinetic study of everolimus, a mammalian target of rapamycin inhibitor, in combination with docetaxel for recurrent/refractory nonsmall cell lung cancer. Cancer, 2010, 116, 3903-3909.	2.0	36
90	mTOR Complex 2 Is Involved in Regulation of Cbl-Dependent c-FLIP Degradation and Sensitivity of TRAIL-Induced Apoptosis. Cancer Research, 2013, 73, 1946-1957.	0.4	36

#	Article	IF	CITATIONS
91	A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics, 2020, 10, 3708-3721.	4.6	36
92	Celecoxib Promotes c-FLIP Degradation through Akt-Independent Inhibition of GSK3. Cancer Research, 2011, 71, 6270-6281.	0.4	35
93	Oncogenic Ras and B-Raf Proteins Positively Regulate Death Receptor 5 Expression through Co-activation of ERK and JNK Signaling. Journal of Biological Chemistry, 2012, 287, 257-267.	1.6	35
94	Cables 1 Complex Couples Survival Signaling to the Cell Death Machinery. Cancer Research, 2015, 75, 147-158.	0.4	35
95	The BET bromodomain inhibitor, JQ1, facilitates c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 and c-Myc inhibition. Oncotarget, 2015, 6, 34669-34679.	0.8	35
96	mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?. Frontiers of Medicine, 2021, 15, 221-231.	1.5	34
97	Overcoming acquired resistance of epidermal growth factor receptorâ€mutant non–small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589). Cancer, 2020, 126, 2024-2033.	2.0	32
98	Implication of c-Myc in apoptosis induced by the retinoid CD437 in human lung carcinoma cells. Oncogene, 1999, 18, 3894-3901.	2.6	31
99	Enhanced growth inhibition and apoptosis induction in NSCLC cell lines by combination of celecoxib and 4HPR at clinically relevant concentrations. Cancer Biology and Therapy, 2005, 4, 413-419.	1.5	30
100	c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL. Molecular Cancer, 2010, 9, 315.	7.9	29
101	Targeting c-Myc to Overcome Acquired Resistance of EGFR Mutant NSCLC Cells to the Third-Generation EGFR Tyrosine Kinase Inhibitor, Osimertinib. Cancer Research, 2021, 81, 4822-4834.	0.4	29
102	Mono- or Double-Site Phosphorylation Distinctly Regulates the Proapoptotic Function of Bax. PLoS ONE, 2010, 5, e13393.	1.1	28
103	The PI3 kinase inhibitor NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation, contributing to induction of apoptosis and enhancement of TRAIL-induced apoptosis. Cancer Letters, 2013, 338, 229-238.	3.2	28
104	BRD4 Levels Determine the Response of Human Lung Cancer Cells to BET Degraders That Potently Induce Apoptosis through Suppression of McI-1. Cancer Research, 2020, 80, 2380-2393.	0.4	28
105	Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget, 2015, 6, 41324-41338.	0.8	28
106	Hypermethylation of the Death-Associated Protein Kinase Promoter Attenuates the Sensitivity to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Human Non–Small Cell Lung Cancer Cells. Molecular Cancer Research, 2004, 2, 685-691.	1.5	28
107	The farnesyltransferase inhibitor lonafarnib induces growth arrest or apoptosis of human lung cancer cells without downregulation of Akt. Cancer Biology and Therapy, 2004, 3, 1092-1098.	1.5	27
108	Understanding the Role of the Death Receptor 5/FADD/caspase-8 Death Signaling in Cancer Metastasis. Molecular and Cellular Pharmacology, 2011, 3, 31-34.	1.7	27

#	Article	IF	CITATIONS
109	MEK or ERK inhibition effectively abrogates emergence of acquired osimertinib resistance in the treatment of epidermal growth factor receptor–mutant lung cancers. Cancer, 2020, 126, 3788-3799.	2.0	26
110	Overcoming acquired resistance of EGFRâ€mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib, with the natural product honokiol. Molecular Oncology, 2020, 14, 882-895.	2.1	26
111	Tipifarnib sensitizes cells to proteasome inhibition by blocking degradation of bortezomib-induced aggresomes. Blood, 2010, 116, 5285-5288.	0.6	25
112	Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of Geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Molecular Cancer, 2010, 9, 23.	7.9	25
113	Pleiotropic functions of EAPII/TTRAP/TDP2. Cell Cycle, 2011, 10, 3274-3283.	1.3	25
114	Human papillomavirus oncoprotein E6 upregulates c-Met through p53 downregulation. European Journal of Cancer, 2016, 65, 21-32.	1.3	25
115	The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5. Scientific Reports, 2017, 7, 8027.	1.6	25
116	Enhancing perifosine's anticancer efficacy by preventing autophagy. Autophagy, 2010, 6, 184-185.	4.3	24
117	K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance in pancreatic ductal adenocarcinomas. Cancer Letters, 2012, 322, 58-69.	3.2	24
118	Modulation of Bax and mTOR for Cancer Therapeutics. Cancer Research, 2017, 77, 3001-3012.	0.4	24
119	Blockade of Glioma Proliferation Through Allosteric Inhibition of JAK2. Science Signaling, 2013, 6, ra55.	1.6	23
120	Co-inhibition of BET and proteasome enhances ER stress and Bim-dependent apoptosis with augmented cancer therapeutic efficacy. Cancer Letters, 2018, 435, 44-54.	3.2	23
121	Downregulation of IRS-1 promotes metastasis of head and neck squamous cell carcinoma. Oncology Reports, 2012, 28, 659-667.	1.2	22
122	A Translational, Pharmacodynamic, and Pharmacokinetic Phase IB Clinical Study of Everolimus in Resectable Non–Small Cell Lung Cancer. Clinical Cancer Research, 2015, 21, 1859-1868.	3.2	22
123	Expression of Death Receptor 4 Is Positively Regulated by MEK/ERK/AP-1 Signaling and Suppressed upon MEK Inhibition. Journal of Biological Chemistry, 2016, 291, 21694-21702.	1.6	22
124	The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacological Research, 2022, 175, 105998.	3.1	21
125	mTORC2 Suppresses GSK3-Dependent Snail Degradation to Positively Regulate Cancer Cell Invasion and Metastasis. Cancer Research, 2019, 79, 3725-3736.	0.4	20
126	The Third-Generation EGFR Inhibitor, Osimertinib, Promotes c-FLIP Degradation, Enhancing Apoptosis Including TRAIL-Induced Apoptosis in NSCLC Cells with Activating EGFR Mutations. Translational Oncology, 2019, 12, 705-713.	1.7	20

#	Article	IF	Citations
127	Searching for the real function of mTOR signaling in the regulation of PD-L1 expression. Translational Oncology, 2020, 13, 100847.	1.7	20
128	Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules, 2021, 11, 499.	1.8	20
129	Prognostic impact of Fas-associated death domain, a key component in death receptor signaling, is dependent on the presence of lymph node metastasis in head and neck squamous cell carcinoma. Cancer Biology and Therapy, 2013, 14, 365-369.	1.5	19
130	Membrane-Associated RING-CH 8 Functions as a Novel PD-L1 E3 Ligase to Mediate PD-L1 Degradation Induced by EGFR Inhibitors. Molecular Cancer Research, 2021, 19, 1622-1634.	1.5	19
131	Tumour necrosis factorâ€Î±â€induced protein 8â€like 2 is a novel regulator of proliferation, migration, and invasion in human rectal adenocarcinoma cells. Journal of Cellular and Molecular Medicine, 2019, 23, 1698-1713.	1.6	18
132	Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer. Acta Biomaterialia, 2021, 129, 258-268.	4.1	18
133	Induction of SREBP1 degradation coupled with suppression of SREBP1-mediated lipogenesis impacts the response of EGFR mutant NSCLC cells to osimertinib. Oncogene, 2021, 40, 6653-6665.	2.6	17
134	The Novel Akt Inhibitor API-1 Induces c-FLIP Degradation and Synergizes with TRAIL to Augment Apoptosis Independent of Akt Inhibition. Cancer Prevention Research, 2012, 5, 612-620.	0.7	15
135	GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth. Oncotarget, 2015, 6, 8974-8987.	0.8	15
136	Monocyte chemotactic protein-induced protein-1 enhances DR5 degradation and negatively regulates DR5 activation-induced apoptosis through its deubiquitinase function. Oncogene, 2018, 37, 3415-3425.	2.6	15
137	Downregulation of death receptor 4 is tightly associated with positive response of EGFR mutant lung cancer to EGFR-targeted therapy and improved prognosis. Theranostics, 2021, 11, 3964-3980.	4.6	15
138	The Farnesyltransferase Inhibitor R115777 Up-regulates the Expression of Death Receptor 5 and Enhances TRAIL-Induced Apoptosis in Human Lung Cancer Cells. Cancer Research, 2007, 67, 4973-4980.	0.4	14
139	Celecoxib antagonizes perifosine's anticancer activity involving a cyclooxygenase-2-dependent mechanism. Molecular Cancer Therapeutics, 2009, 8, 2575-2585.	1.9	14
140	Soluble FAS ligand as a biomarker of disease recurrence in differentiated thyroid cancer. Cancer, 2013, 119, 1503-1511.	2.0	14
141	Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Scientific Reports, 2016, 6, 26803.	1.6	14
142	Retinoic Acid Receptor Beta and Colon Cancer. Cancer Biology and Therapy, 2004, 3, 87-88.	1.5	11
143	The Role of Cetuximab in the Management of Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2009, 10, 230-238.	1.1	11
144	Acridine Yellow G Blocks Glioblastoma Growth via Dual Inhibition of Epidermal Growth Factor Receptor and Protein Kinase C Kinases. Journal of Biological Chemistry, 2012, 287, 6113-6127.	1.6	11

#	Article	IF	Citations
145	Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin. Heliyon, 2017, 3, e00378.	1.4	11
146	Inhibition of IGF1R enhances 2-deoxyglucose in the treatment of non-small cell lung cancer. Lung Cancer, 2018, 123, 36-43.	0.9	11
147	Inhibition of ACK1 delays and overcomes acquired resistance of EGFR mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib. Lung Cancer, 2020, 150, 26-35.	0.9	11
148	Managing Acquired Resistance to Third-Generation EGFR Tyrosine Kinase Inhibitors Through Co-Targeting MEK/ERK Signaling. Lung Cancer: Targets and Therapy, 2021, Volume 12, 1-10.	1.3	11
149	Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals biomarkers of clinical prognosis. Cell Reports Methods, 2021, 1, 100050.	1.4	10
150	Overcoming acquired resistance to third-generation EGFR inhibitors by targeting activation of intrinsic apoptotic pathway through Mcl-1 inhibition, Bax activation, or both. Oncogene, 2022, 41, 1691-1700.	2.6	9
151	Targeting mTOR signaling for lung cancer therapy. Journal of Thoracic Oncology, 2006, 1, 109-11.	0.5	9
152	Assessment of apoptosis-inducing effects of docetaxel combined with the proteasome inhibitor PS-341 in human lung cancer cells. Cancer Biology and Therapy, 2007, 6, 749-754.	1.5	8
153	DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. Cell Communication and Signaling, 2017, 15, 18.	2.7	8
154	MET inhibition downregulatesÂDR4 expression in MET-amplified lung cancer cells with acquired resistance to EGFR inhibitors through suppressing AP-1-mediated transcription. Neoplasia, 2021, 23, 766-774.	2.3	8
155	Inhibition of MEK5/ERK5 signaling overcomes acquired resistance to the third generation EGFR inhibitor, osimertinib, via enhancing Bim-dependent apoptosis. Cancer Letters, 2021, 519, 141-149.	3.2	8
156	Impact of genetic alterations on mTOR-targeted cancer therapy. Chinese Journal of Cancer, 2013, 32, 270-274.	4.9	8
157	Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models. PLoS ONE, 2019, 14, e0206309.	1.1	7
158	Therapeutic efficacy of the novel SHP2 degrader SHP2-D26, alone or in combination, against lung cancer is associated with modulation of p70S6K/S6, Bim and Mcl-1. Cancer Gene Therapy, 2022, 29, 1558-1569.	2.2	7
159	Internal Ribosome Entry Site-Based Bicistronic In Situ Reporter Assays for Discovery of Transcription-Targeted Lead Compounds. Chemistry and Biology, 2015, 22, 957-964.	6.2	6
160	Mcl-1 levels critically impact the sensitivities of human colorectal cancer cells to APG-1252-M1, a novel Bcl-2/Bcl-XL dual inhibitor that induces Bax-dependent apoptosis. Neoplasia, 2022, 29, 100798.	2.3	5
161	All-trans-retinoic Acid Enhances the Effect of Adenovirus-Mediated Wild-Type p53 Gene Transfer in Head and Neck Squamous Cell Carcinoma. Laryngoscope, 2001, 111, 1459-1464.	1.1	4
162	Recent developments of retinoids as therapeutic agents. Expert Opinion on Therapeutic Patents, 2002, 12, 529-542.	2.4	4

#	Article	IF	CITATIONS
163	How Much Do We Know About Retinoid-Regulated Genes?. Cancer Biology and Therapy, 2002, 1, 28-30.	1.5	4
164	Rictor, an essential component of mTOR complex 2, undergoes caspase-mediated cleavage during apoptosis induced by multiple stimuli. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 338-347.	2.2	4
165	c-FLIP links mTORC2 to apoptosis. Oncoscience, 2014, 1, 306-307.	0.9	2
166	The novel MET inhibitor, HQP8361, possesses single agent activity and enhances therapeutic efficacy of AZD9291 (osimertinib) against AZD9291-resistant NSCLC cells with activated MET. American Journal of Cancer Research, 2020, 10, 3316-3327.	1.4	2
167	Therapeutic potential of synthetic triterpenoids in neuroblastoma. Cancer Biology and Therapy, 2008, 7, 718-720.	1.5	1
168	Does osimertinib treatment discriminate young patients?. Journal of Thoracic Disease, 2019, 11, \$1852-\$1854.	0.6	1
169	Re-enforcing the strategy of targeting MEK/ERK signaling to overcome acquired resistance to third generation EGFR inhibitors. Oncoscience, 2021, 8, 80-81.	0.9	1
170	Taking action early to manage emergence of acquired resistance to osimertinib or other third generation EGFR inhibitors. Oncoscience, 2021, 8, 101-102.	0.9	1
171	Combination of Farnesyl Transferase Inhibition (Lonafarnib) and Proteasome Inhibition (Bortezomib) Results in Rapid Caspase Activation and down Regulation of p-AKT in Myeloma cell Lines and Primary Myeloma Cells Blood, 2004, 104, 2471-2471.	0.6	1
172	Therapeutic potential of osimertinib in the treatment of lung cancer with HER2 aberrations. Translational Cancer Research, 2018, 7, S577-S579.	0.4	O
173	Does the natural product, honokiol, have value in the battle against osimertinib resistance?. Oncoscience, 2020, 7, 73-75.	0.9	0
174	Does the natural product, honokiol, have value in the battle against osimertinib resistance?. Oncoscience, 2020, 7, 73-75.	0.9	O
175	The novel BET degrader, QCA570, is highly active against the growth of human NSCLC cells and synergizes with osimertinib in suppressing osimertinib-resistant EGFR-mutant NSCLC cells American Journal of Cancer Research, 2022, 12, 779-792.	1.4	0