Zhiyong Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2450267/publications.pdf

Version: 2024-02-01

34	1,062	18	32
papers	citations	h-index	g-index
34	34	34	1174
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding variability in mechanical properties of hot rolled microalloyed pipeline steels: Process–structure–property relationship. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 574, 94-103.	2.6	26
2	Tunable ZnO quantum dots for bioimaging: synthesis and photoluminescence. Materials Technology, 2013, 28, 221-227.	1.5	56
3	Understanding mechanical property anisotropy in high strength niobium-microalloyed linepipe steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 194-210.	2.6	36
4	Nanoscale deformation experiments on the strain rate sensitivity of phase reversion induced nanograined/ultrafine-grained austenitic stainless steels and comparison with the coarse-grained counterpart. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 548, 161-174.	2.6	23
5	Carbon nanotube-induced structure and phase evolution in polymer-based nanocomposites crystallized at elevated pressures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 666-672.	1.7	12
6	Tunable Nanometerâ€6cale Architecture of Organic–Inorganic Hybrid Nanostructured Materials for Structural and Functional Applications. Macromolecular Chemistry and Physics, 2012, 213, 315-323.	1.1	13
7	Micromagnetic modelling of new generation of FePt and FeRh nanostructures for heat assisted magnetic recording. Materials Technology, 2011, 26, 200-205.	1.5	15
8	Magnetic sensors for data storage: perspective and future outlook. Materials Technology, 2011, 26, 191-199.	1.5	32
9	Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8772-8780.	2.6	64
10	Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6958-6963.	2.6	35
11	Fine-scale precipitation and mechanical properties of thin slab processed titanium–niobium bearing high strength steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7077-7083.	2.6	77
12	Probing deformation processes in near-defect free volume in high strength–high ductility nanograined/ultrafine-grained (NG/UFG) metastable austenitic stainless steels. Scripta Materialia, 2010, 63, 1057-1060.	2.6	52
13	Magnetic behavior of chemically synthesized FePt–FeRh nanostructures. Physica B: Condensed Matter, 2010, 405, 2189-2193.	1.3	15
14	Simulated temperature dependence of exchange bias field in exchange coupled FeRh/FePt bilayer: relevance in magnetic recording media. Materials Technology, 2010, 25, 307-312.	1.5	8
15	Synthesis and magnetic properties of self-assembled FeRh nanoparticles. Applied Physics Letters, 2008, 93, .	1.5	33
16	Self-assembled magnetic nanostructures. Materials Technology, 2008, 23, 66-80.	1.5	7
17	The effects of a magnetic field on the crystallization of a fluorozirconate glass. Journal of Materials Research, 2007, 22, 1431-1434.	1.2	4
18	Characterization of Nanoporous Silicon Layer to Reduce the Optical Losses of Crystalline Silicon Solar Cells. Journal of Nanoscience and Nanotechnology, 2007, 7, 3713-3716.	0.9	12

#	Article	IF	CITATIONS
19	Microstructures and magnetic alignment of L10 FePt nanoparticles. Journal of Applied Physics, 2007, 101, 09J113.	1.1	26
20	Synthesis and magnetic properties of FePt nanoparticles with hard nonmagnetic shells. Journal of Nanoscience and Nanotechnology, 2007, 7, 350-5.	0.9	0
21	Improved synthesis and easy-axis alignment of L10-FePt nanoparticles. Journal of Applied Physics, 2006, 99, 08E904.	1.1	12
22	Enhanced Magnetic Properties of Self-Assembled FePt Nanoparticles with MnO Shell. Journal of the American Chemical Society, 2006, 128, 1042-1043.	6.6	59
23	Sintering behavior of spin-coated FePt and FePtAu nanoparticles. Journal of Applied Physics, 2006, 99, 08N704.	1.1	6
24	Effect of Sintered Grain Growth on Chemical Ordering in Binary FePt/Cu Nanoparticle Arrays. Journal of Nanoscience and Nanotechnology, 2006, 6, 2147-2150.	0.9	0
25	Pulsed-thermal processing of chemically synthesized FePt nanoparticles. Jom, 2006, 58, 43-45.	0.9	3
26	Synthesis of FePtAu nanoparticles in high-boiling-point solvents. IEEE Transactions on Magnetics, 2005, 41, 3385-3387.	1.2	14
27	Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles. Journal of Applied Physics, 2005, 97, 10J310.	1.1	36
28	Direct synthesis and easy axis alignment of L10â€FePt nanoparticles. Journal of Applied Physics, 2005, 97, 10J318.	1.1	20
29	Easy axis alignment of chemically partially ordered FePt nanoparticles. Applied Physics Letters, 2005, 86, 062503.	1.5	95
30	Model for the easy-axis alignment of chemically synthesized L10 FePt nanoparticles. Applied Physics Letters, 2005, 87, 202508.	1.5	60
31	Synthesis and magnetic properties of CoPt nanoparticles. Journal of Applied Physics, 2004, 95, 6747-6749.	1.1	90
32	Correction to: "Synthesis, Self-Assembly, and Magnetic Properties of <tex>\$[hboxFePt]_1-rm xhboxAu_rm x\$</tex> Nanoparticles― IEEE Transactions on Magnetics, 2004, 40, 513-513.	1.2	3
33	Synthesis and phase transition of self-assembled FePd and FePdPt nanoparticles. Journal of Applied Physics, 2004, 95, 6744-6746.	1.1	38
34	Synthesis, self-assembly, and magnetic properties of [FePt]/sub 1-x/Au/sub x/ nanoparticles. IEEE Transactions on Magnetics, 2003, 39, 2753-2757.	1.2	80