Pierre-Louis Teissedre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2449676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a synthetic model to study browning caused by laccase activity from Botrytis cinerea. LWT - Food Science and Technology, 2022, 154, 112871.	2.5	5
2	Identification, quantitation and sensory contribution of new C-glucosidic ellagitannin-derived spirit compounds. Food Chemistry, 2022, 384, 132307.	4.2	4
3	Oxyresveratrol and Gnetol Glucuronide Metabolites: Chemical Production, Structural Identification, Metabolism by Human and Rat Liver Fractions, and <i>In Vitro</i> Anti-inflammatory Properties. Journal of Agricultural and Food Chemistry, 2022, 70, 13082-13092.	2.4	3
4	Impact of Barrel Toasting on Ellagitannin Composition of Aged Cognac Eaux-de-Vie. Molecules, 2022, 27, 2531.	1.7	4
5	CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics, 2022, 14, 1252.	2.0	18
6	Effect of enological treatments on phenolic and sensory characteristics of red wine during aging: Micro-oxygenation, sulfur dioxide, iron with copper and gelatin fining. Food Chemistry, 2021, 339, 127848.	4.2	16
7	Use of alimentary film for selective sorption of haloanisoles from contaminated red wine. Food Chemistry, 2021, 350, 128364.	4.2	4
8	Validation of a mass spectrometry method to identify and quantify ellagitannins in oak wood and cognac during aging in oak barrels. Food Chemistry, 2021, 342, 128223.	4.2	6
9	Impact of oak wood modalities on the (non)-volatile composition and sensory attributes of red wines. Oeno One, 2021, 55, 285-299.	0.7	2
10	Pomegranate Juice Ameliorates Dopamine Release and Behavioral Deficits in a Rat Model of Parkinson's Disease. Brain Sciences, 2021, 11, 1127.	1.1	19
11	Dietary and lifestyle habits of drinkers with preference for alcoholic beverage: does it really matter for public health? A review of the evidence. Oeno One, 2021, 55, .	0.7	1
12	Effects of Long-Term Bottle Storage on Red and Rosé Wines Sealed with Different Types of Closures. Foods, 2021, 10, 2918.	1.9	0
13	Trans-ε-Viniferin Encapsulation in Multi-Lamellar Liposomes: Consequences on Pharmacokinetic Parameters, Biodistribution and Glucuronide Formation in Rats. Nutrients, 2021, 13, 4212.	1.7	4
14	Sensory characterisation of Cognac eaux-de-vie aged in barrels subjected to different toasting processes. Oeno One, 2021, 56, 17-28.	0.7	5
15	ls deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas?. Oeno One, 2021, 56, 101-116.	0.7	3
16	Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite—Urolithin A—In the Brain. International Journal of Molecular Sciences, 2020, 21, 202.	1.8	95
17	Effect of extraction time on content, composition and sensory perception of proanthocyanidins in wineâ€like medium and during industrial fermentation of Cabernet Sauvignon. Journal of the Science of Food and Agriculture, 2020, 100, 1887-1896.	1.7	11
18	Impact of Different Stoppers on the Composition of Red and Rosé Lagrein, Schiava (Vernatsch) and Merlot Wines Stored in Bottle. Molecules, 2020, 25, 4276.	1.7	8

#	Article	IF	CITATIONS
19	Is it scientifically justifiable to exclude wine and/or unfermented grape derivatives from the diet of consumers with or at risk of developing type-2 diabetes?. Food and Function, 2020, 11, 10266-10278.	2.1	3
20	Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods, 2020, 9, 1785.	1.9	54
21	New C-Glycosidic Ellagitannins Formed upon Oak Wood Toasting, Identification and Sensory Evaluation. Foods, 2020, 9, 1477.	1.9	10
22	High-Performance Liquid Chromatography–Hydrogen/Deuterium Exchange–High-Resolution Mass Spectrometry Partial Identification of a Series of Tetra- and Pentameric Cyclic Procyanidins and Prodelphinidins in Wine Extracts. Journal of Agricultural and Food Chemistry, 2020, 68, 3312-3321.	2.4	12
23	Oenological tannins to prevent Botrytis cinerea damage in grapes and musts: Kinetics and electrophoresis characterization of laccase. Food Chemistry, 2020, 316, 126334.	4.2	19
24	Pinot Blanc: Impact of the Winemaking Variables on the Evolution of the Phenolic, Volatile and Sensory Profiles. Foods, 2020, 9, 499.	1.9	19
25	Effects of alcohol consumption in general, and wine in particular, on the risk of cancer development: a review. Oeno One, 2020, 54, 813-832.	0.7	8
26	Development of UV-vis and FTIR Partial Least Squares models: comparison and combination of two spectroscopy techniques with chemometrics for polyphenols quantification in red wine. Oeno One, 2020, 54, 779-792.	0.7	5
27	Comparison of high pressure treatment with conventional red wine aging processes: impact on phenolic composition. Food Research International, 2019, 116, 223-231.	2.9	16
28	Ellagitannins and Flavano-Ellagitannins: Red Wines Tendency in Different Areas, Barrel Origin and Ageing Time in Barrel and Bottle. Biomolecules, 2019, 9, 316.	1.8	27
29	Distribution of crown hexameric procyanidin and its tetrameric and pentameric congeners in red and white wines. Food Chemistry, 2019, 299, 125125.	4.2	16
30	Crown Procyanidin Tetramer: A Procyanidin with an Unusual Cyclic Skeleton with a Potent Protective Effect against Amyloid-β-Induced Toxicity. Molecules, 2019, 24, 1915.	1.7	17
31	Copigmentation of Malvidin-3-O-Monoglucoside by Oenological Tannins: Incidence on Wine Model Color in Function of Botanical Origin, pH and Ethanol Content. Molecules, 2019, 24, 1448.	1.7	15
32	Disease Resistant Bouquet Vine Varieties: Assessment of the Phenolic, Aromatic, and Sensory Potential of Their Wines. Biomolecules, 2019, 9, 793.	1.8	15
33	Prediction of anthocyanin concentrations during red wine fermentation: development of Fourier transform infrared spectroscopy partial least squares models. Oeno One, 2019, 53, .	0.7	6
34	Isotopic Exchange HPLC-HRMS/MS Applied to Cyclic Proanthocyanidins in Wine and Cranberries. Journal of the American Society for Mass Spectrometry, 2018, 29, 663-674.	1.2	14
35	New insight into the unresolved HPLC broad peak of Cabernet Sauvignon grape seed polymeric tannins by combining CPC and Q-ToF approaches. Food Chemistry, 2018, 249, 168-175.	4.2	18
36	First evidence of epicatechin vanillate in grape seed and red wine. Food Chemistry, 2018, 259, 304-310.	4.2	20

#	Article	IF	CITATIONS
37	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	1.8	119
38	Chemical and sensorial investigation of in-mouth sensory properties of grape anthocyanins. Scientific Reports, 2018, 8, 17098.	1.6	36
39	Volatile, phenolic, and sensory profiles of inâ€amphorae Chardonnay wine by mass spectrometry and chemometric analysis. Journal of Mass Spectrometry, 2018, 53, 833-841.	0.7	7
40	Selective binding of potassium and calcium ions to novel cyclic proanthocyanidins in wine by highâ€performance liquid chromatography/highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1637-1642.	0.7	10
41	Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chemistry, 2018, 268, 210-219.	4.2	55
42	Grape Pomace: Antioxidant Activity, Potential Effect Against Hypertension and Metabolites Characterization after Intake. Diseases (Basel, Switzerland), 2018, 6, 60.	1.0	22
43	Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Analytical Methods, 2018, 11, 3425-3434.	1.3	44
44	Disambiguation of Isomeric Procyanidins with Cyclic B-Type and Non-cyclic A-Type Structures from Wine and Peanut Skin with HPLC-HDX-HRMS/MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 2268-2277.	1.2	18
45	Relative abundances of novel cyclic prodelphinidins in wine depending on the grape variety. Journal of Mass Spectrometry, 2018, 53, 1116-1125.	0.7	5
46	The effects of wine consumption on cardiovascular disease and associated risk factors: a narrative review. Oeno One, 2018, 52, 67-79.	0.7	9
47	Composition of grape and wine from resistant vines varieties. Oeno One, 2018, 52, 211-217.	0.7	20
48	Oxygen consumption rates by different oenological tannins in a model wine solution. Food Chemistry, 2017, 234, 26-32.	4.2	53
49	Metabolic and RNA profiling elucidates proanthocyanidins accumulation in Aglianico grape. Food Chemistry, 2017, 233, 52-59.	4.2	19
50	Comparison between Malolactic Fermentation Container and Barrel Toasting Effects on Phenolic, Volatile, and Sensory Profiles of Red Wines. Journal of Agricultural and Food Chemistry, 2017, 65, 3320-3329.	2.4	21
51	High resolution mass approach to characterize refrigerated black truffles stored under different storage atmospheres. Food Research International, 2017, 102, 526-535.	2.9	17
52	Fresh refrigerated Tuber melanosporum truffle: effect of the storage conditions on the antioxidant profile, antioxidant activity and volatile profile. European Food Research and Technology, 2017, 243, 2255-2263.	1.6	28
53	Updated knowledge about pyranoanthocyanins: Impact of oxygen on their contents, and contribution in the winemaking process to overall wine color. Trends in Food Science and Technology, 2017, 67, 139-149.	7.8	53
54	Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.). Food Research International, 2017, 98, 68-78.	2.9	32

#	Article	IF	CITATIONS
55	Spectroscopic and theoretical investigations of phenolic acids in white wines. Food Chemistry, 2017, 221, 568-575.	4.2	23
56	Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes. Molecules, 2017, 22, 68.	1.7	146
57	Comparison of Aquitaine and Rioja Red Wines: Characterization of Their Phenolic Composition and Evolution from 2000 to 2013. Molecules, 2017, 22, 192.	1.7	7
58	In Vitro Glucuronidation and Sulfation of Îμ-Viniferin, a Resveratrol Dimer, in Humans and Rats. Molecules, 2017, 22, 733.	1.7	17
59	Changes in Tannin Composition of Syrah Grape Skins and Seeds during Fruit Ripening under Contrasting Water Conditions. Molecules, 2017, 22, 1453.	1.7	52
60	Addition of wood chips in red wine during and after alcoholic fermentation: differences in color parameters, phenolic content and volatile composition. Oeno One, 2017, 50, .	0.7	20
61	Structures of polymeric pigments in red wine and their derived quantification markers revealed by highâ€resolution quadrupole timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 81-88.	0.7	15
62	Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol. Chemosphere, 2016, 156, 150-162.	4.2	24
63	Variations in oxygen and ellagitannins, and organoleptic properties of red wine aged in French oak barrels classified by a near infrared system. Food Chemistry, 2016, 204, 381-390.	4.2	21
64	Evaluation of the potential of high pressure technology as an enological practice for red wines. Innovative Food Science and Emerging Technologies, 2016, 33, 76-83.	2.7	30
65	Comments on Moderate Alcohol Consumption and Mortality. Journal of Studies on Alcohol and Drugs, 2016, 77, 834-836.	0.6	6
66	Drinking pattern of wine and effects on human health: why should we drink moderately and with meals?. Food and Function, 2016, 7, 2937-2942.	2.1	38
67	Effect of irrigation regime on perceived astringency and proanthocyanidin composition of skins and seeds of Vitis vinifera L. cv. Syrah grapes under semiarid conditions. Food Chemistry, 2016, 203, 292-300.	4.2	39
68	Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency. PLoS ONE, 2016, 11, e0161095.	1.1	29
69	Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity. Molecules, 2015, 20, 2190-2207.	1.7	94
70	Compositional and sensory characterization of grape proanthocyanidins and oak wood ellagitannin. Tetrahedron, 2015, 71, 2999-3006.	1.0	33
71	Transfer of tannin characteristics from grape skins or seeds to wine-like solutions and their impact on potential astringency. LWT - Food Science and Technology, 2015, 63, 667-676.	2.5	25
72	Raman spectroscopy of white wines. Food Chemistry, 2015, 181, 235-240.	4.2	38

PIERRE-LOUIS TEISSEDRE

#	Article	IF	CITATIONS
73	Chemical and sensory evaluation of wine matured in oak barrel: effect of oak species involved and toasting process. European Food Research and Technology, 2015, 240, 533-547.	1.6	80
74	Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review. Carbohydrate Research, 2015, 417, 94-102.	1.1	73
75	Chip electrophoresis as a novel approach to measure the polyphenols reactivity toward human saliva. Electrophoresis, 2014, 35, 1735-1741.	1.3	15
76	Isolation, characterization, and determination of a new compound in red wine. Analytical and Bioanalytical Chemistry, 2014, 406, 1201-1208.	1.9	7
77	Occurrence and Formation Kinetics of Pyranomalvidin-Procyanidin Dimer Pigment in Merlot Red Wine: Impact of Acidity and Oxygen Concentrations. Journal of Agricultural and Food Chemistry, 2014, 62, 1701-1705.	2.4	18
78	Wine by-Products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties. Molecules, 2014, 19, 482-506.	1.7	134
79	Relation between volatile composition, ellagitannin content and sensory perception of oak wood chips representing different toasting processes. European Food Research and Technology, 2013, 236, 735-746.	1.6	44
80	Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts. Molecules, 2013, 18, 1076-1100.	1.7	160
81	Characterization of Polyphenols and Antioxidant Potential of White Grape Pomace Byproducts (<i>Vitis vinifera</i> L.). Journal of Agricultural and Food Chemistry, 2013, 61, 11579-11587.	2.4	76
82	Influence of phenolic compounds on the sensorial perception and volatility of red wine esters in model solution: An insight at the molecular level. Food Chemistry, 2013, 140, 76-82.	4.2	74
83	Impact of foliar symptoms of " <scp>E</scp> sca proper―on proteins related to defense and oxidative stress of grape skins during ripening. Proteomics, 2013, 13, 108-118.	1.3	14
84	Chemical dereplication of wine stilbenoids using high performance liquid chromatography–nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 2013, 1289, 19-26.	1.8	12
85	Extraction of oak volatiles and ellagitannins compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: Behaviour during storage. Food Chemistry, 2013, 140, 168-177.	4.2	57
86	Tannins and Anthocyanins of Wine: Phytochemistry and Organoleptic Properties. , 2013, , 2255-2274.		4
87	Hydrolyzable Tannins: Gallotannins and Ellagitannins. , 2013, , 1975-2010.		21
88	Influence of Wood Barrels Classified by NIRS on the Ellagitannin Content/Composition and on the Organoleptic Properties of Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 11109-11118.	2.4	26
89	Comparative evaluation of the phenolic content and antioxidant capacity of sun-dried raisins. Journal of the Science of Food and Agriculture, 2013, 93, 2963-2972.	1.7	50
90	Absorption, Disposition, Metabolism, and Excretion of [3- ¹⁴ C]Caffeic Acid in Rats. Journal of Agricultural and Food Chemistry, 2012, 60, 5205-5214.	2.4	40

#	Article	IF	CITATIONS
91	Scalping of Light Volatile Sulfur Compounds by Wine Closures. Journal of Agricultural and Food Chemistry, 2012, 60, 10952-10956.	2.4	14
92	Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 2012, 60, 11850-11858.	2.4	115
93	Identification of Adducts between an Odoriferous Volatile Thiol and Oxidized Grape Phenolic Compounds: Kinetic Study of Adduct Formation under Chemical and Enzymatic Oxidation Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 2647-2656.	2.4	52
94	Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase. Food Chemistry, 2012, 135, 1298-1302.	4.2	19
95	Impact of the Oxygen Exposure during Bottling and Oxygen Barrier Properties of Different Closures on Wine Quality during Post-Bottling. ACS Symposium Series, 2012, , 167-187.	0.5	2
96	Bioavailability of wine-derived phenolic compounds in humans: a review. Food and Function, 2012, 3, 995.	2.1	74
97	Cabernet sauvignon red wine astringency quality control by tannin characterization and polymerization during storage. European Food Research and Technology, 2012, 234, 253-261.	1.6	87
98	Rapid and simple method for the quantification of flavan-3-ols in wine. European Food Research and Technology, 2012, 234, 361-365.	1.6	21
99	A Total Red Wine Polyphenolic Extract Prevents a Pathological Phenotype Manifested on Cardiomyocytes Isolated from Rats with Nutritionally-induced Metabolic Syndrome. Journal of Wine Research, 2011, 22, 147-149.	0.9	0
100	Effects of Wine Consumption on Cardiovascular Diseases. Journal of Wine Research, 2011, 22, 159-163.	0.9	0
101	Polyphenols prevent lipid abnormalities and arterial dysfunction in hamsters on a high-fat diet: a comparative study of red grape and white persimmon wines. Food and Function, 2011, 2, 555.	2.1	16
102	Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food and Function, 2011, 2, 400.	2.1	45
103	Impact of Concentration of Ellagitannins in Oak Wood on Their Levels and Organoleptic Influence in Red Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 5677-5683.	2.4	56
104	Tannin Composition of Cabernet-Sauvignon and Merlot Grapes from the Bordeaux Area for Different Vintages (2006 to 2009) and Comparison to Tannin Profile of Five 2009 Vintage Mediterranean Grapes Varieties. Molecules, 2011, 16, 1519-1532.	1.7	41
105	Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Analytical and Bioanalytical Chemistry, 2011, 401, 1531-1539.	1.9	62
106	Impact of closures on wine post-bottling development: a review. European Food Research and Technology, 2011, 233, 905-914.	1.6	49
107	Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chemistry, 2011, 126, 1971-1977.	4.2	141
108	Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chemistry, 2011, 126, 1991-1999.	4.2	106

#	Article	IF	CITATIONS
109	HPLC-DAD-MS Determination of Colored and Colorless Phenolic Compounds in Kalecik Karasi Wines: Effect of Different Vineyard Locations. Analytical Letters, 2011, 44, 991-1008.	1.0	9
110	Characterization of colored and colorless phenolic compounds in Öküzgözü wines from Denizli and Elazig regions using HPLC-DAD–MS. Industrial Crops and Products, 2010, 31, 499-508.	2.5	32
111	Physicochemical Studies of New Anthocyanoâ€Ellagitannin Hybrid Pigments: About the Origin of the Influence of Oak <i>C</i> â€Glycosidic Ellagitannins on Wine Color. European Journal of Organic Chemistry, 2010, 2010, 55-63.	1.2	71
112	Reactivity of volatile thiols with polyphenols in a wine-model medium: Impact of oxygen, iron, and sulfur dioxide. Analytica Chimica Acta, 2010, 660, 102-109.	2.6	109
113	Chardonnay grape seed procyanidin extract supplementation prevents highâ€fat dietâ€induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Molecular Nutrition and Food Research, 2009, 53, 659-666.	1.5	105
114	A moderate consumption of Côtes du Rhône red wines affects the progression of aortic lesions, and reduces oxidative stress and p22phoxNADPH oxidase activation in an experimental model of diet-induced atherosclerosis, according to the vinification process. European Food Research and Technology, 2009, 229, 485-493.	1.6	3
115	Fungal Chitinâ^'Glucan from <i>Aspergillus niger</i> Efficiently Reduces Aortic Fatty Streak Accumulation in the High-Fat Fed Hamster, an Animal Model of Nutritionally Induced Atherosclerosis. Journal of Agricultural and Food Chemistry, 2009, 57, 1093-1098.	2.4	31
116	Grape Variety Effect on Proanthocyanidin Composition and Sensory Perception of Skin and Seed Tannin Extracts from Bordeaux Wine Grapes (Cabernet Sauvignon and Merlot) for Two Consecutive Vintages (2006 and 2007). Journal of Agricultural and Food Chemistry, 2009, 57, 545-553.	2.4	143
117	Impact of Oxygen Dissolved at Bottling and Transmitted through Closures on the Composition and Sensory Properties of a Sauvignon Blanc Wine during Bottle Storage. Journal of Agricultural and Food Chemistry, 2009, 57, 10261-10270.	2.4	133
118	Phenolics from purple grape, apple, purple grape juice and apple juice prevent early atherosclerosis induced by an atherogenic diet in hamsters. Molecular Nutrition and Food Research, 2008, 52, 400-407.	1.5	55
119	Bioavailability of [2- ¹⁴ C]Quercetin-4′-glucoside in Rats. Journal of Agricultural and Food Chemistry, 2008, 56, 12127-12137.	2.4	107
120	Effect of Micro-oxygenation on Color and Anthocyanin-Related Compounds of Wines with Different Phenolic Contents. Journal of Agricultural and Food Chemistry, 2008, 56, 5932-5941.	2.4	67
121	Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Quality and Preference, 2008, 19, 286-291.	2.3	203
122	Preventive Effects of Nutritional Doses of Polyphenolic Molecules on Cardiac Fibrosis Associated with Metabolic Syndrome: Involvement of Osteopontin and Oxidative Stress. Journal of Agricultural and Food Chemistry, 2008, 56, 11683-11687.	2.4	32
123	Anthocyanone A:  A Quinone Methide Derivative Resulting from Malvidin 3-O-Glucoside Degradation. Journal of Agricultural and Food Chemistry, 2007, 55, 2698-2704.	2.4	51
124	Ethylidene-Bridged Flavan-3-ols in Red Wine and Correlation with Wine Age. Journal of Agricultural and Food Chemistry, 2007, 55, 6292-6299.	2.4	76
125	Analysis of Ethylidene-Bridged Flavan-3-ols in Wine. Journal of Agricultural and Food Chemistry, 2007, 55, 1109-1116.	2.4	61
126	Main Routes of Oxygen Ingress through Different Closures into Wine Bottles. Journal of Agricultural and Food Chemistry, 2007, 55, 5167-5170.	2.4	75

PIERRE-LOUIS TEISSEDRE

#	Article	IF	CITATIONS
127	Impact of Storage Position on Oxygen Ingress through Different Closures into Wine Bottles. Journal of Agricultural and Food Chemistry, 2006, 54, 6741-6746.	2.4	91
128	Wine constituents inhibit thrombosis but not atherogenesis in C57BL/6 apolipoprotein E-deficient mice. British Journal of Nutrition, 2006, 96, 290-298.	1.2	24
129	The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. British Journal of Nutrition, 2005, 94, 170-181.	1.2	266
130	Extracts Enriched in Different Polyphenolic Families Normalize Increased Cardiac NADPH Oxidase Expression while Having Differential Effects on Insulin Resistance, Hypertension, and Cardiac Hypertrophy in High-Fructose-Fed Rats. Journal of Agricultural and Food Chemistry, 2005, 53, 151-157.	2.4	153
131	Polyphenols-Enriched Chardonnay White Wine and Sparkling Pinot Noir Red Wine Identically Prevent Early Atherosclerosis in Hamsters. Journal of Agricultural and Food Chemistry, 2005, 53, 9823-9829.	2.4	32
132	Dietary Wine Phenolics Catechin, Quercetin, and Resveratrol Efficiently Protect Hypercholesterolemic Hamsters against Aortic Fatty Streak Accumulation. Journal of Agricultural and Food Chemistry, 2005, 53, 2015-2021.	2.4	136
133	In vitro polyphenol effects on activity, expression and secretion of pancreatic bile salt-dependent lipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 67-76.	1.2	6
134	Determination of Stilbenes (δ-viniferin,trans-astringin,trans-piceid,cis- andtrans-resveratrol, ε-viniferin) in Brazilian Wines. Journal of Agricultural and Food Chemistry, 2005, 53, 5664-5669.	2.4	174
135	Antidiabetic Activity of Red Wine Polyphenolic Extract, Ethanol, or Both in Streptozotocin-Treated Rats. Journal of Agricultural and Food Chemistry, 2004, 52, 1008-1016.	2.4	77
136	Red Wine Polyphenols Alone or in Association with Ethanol Prevent Hypertension, Cardiac Hypertrophy, and Production of Reactive Oxygen Species in the Insulin-Resistant Fructose-Fed Rat. Journal of Agricultural and Food Chemistry, 2004, 52, 5593-5597.	2.4	61
137	Phenolics from Commercialized Grape Extracts Prevent Early Atherosclerotic Lesions in Hamsters by Mechanisms Other than Antioxidant Effect. Journal of Agricultural and Food Chemistry, 2004, 52, 5297-5302.	2.4	99
138	Catechins and procyanidins in Mediterranean diets. Food Research International, 2004, 37, 233-245.	2.9	99
139	Hydroxycinnamic acids do not prevent aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters. Life Sciences, 2004, 74, 2365-2377.	2.0	24
140	Effect of a Polyphenols-Enriched Chardonnay White Wine in Diabetic Rats. Journal of Agricultural and Food Chemistry, 2003, 51, 311-318.	2.4	53
141	Variations in the Profile and Content of Anthocyanins in Wines Made from Cabernet Sauvignon and Hybrid Grapes. Journal of Agricultural and Food Chemistry, 2002, 50, 4096-4102.	2.4	85
142	Levels of Stilbene Oligomers and Astilbin in French Varietal Wines and in Grapes during Noble Rot Development. Journal of Agricultural and Food Chemistry, 2002, 50, 2046-2052.	2.4	98
143	Hydrogen Peroxide Generation in Caco-2 Cell Culture Medium by Addition of Phenolic Compounds: Effect of Ascorbic Acid. Free Radical Research, 2002, 36, 593-599.	1.5	45
144	Antioxidant Capacities and Phenolics Levels of French Wines from Different Varieties and Vintages. Journal of Agricultural and Food Chemistry, 2001, 49, 3341-3348.	2.4	260

PIERRE-LOUIS TEISSEDRE

#	Article	IF	CITATIONS
145	Vanadium pharmacokinetics and oral bioavailability upon single-dose administration of vanadyl sulfate to rats. Fundamental and Clinical Pharmacology, 2001, 15, 313-324.	1.0	16
146	Wine phenolics: contribution to dietary intake and bioavailability. Food Research International, 2000, 33, 461-467.	2.9	88
147	Catechin in the Mediterranean diet: vegetable, fruit or wine?. Atherosclerosis, 2000, 153, 107-117.	0.4	61
148	Levels of Flavan-3-ols in French Wines. Journal of Agricultural and Food Chemistry, 1999, 47, 4161-4166.	2.4	97
149	Comparison of (+)-catechin determination in human plasma by high-performance liquid chromatography with two types of detection: fluorescence and ultraviolet. Biomedical Applications, 1998, 707, 195-201.	1.7	44
150	Lead Concentrations and Isotopic Signatures in Vintages of French Wine between 1950 and 1991. Environmental Research, 1998, 78, 161-167.	3.7	33
151	Determination and Levels of Chromium in French Wine and Grapes by Graphite Furnace Atomic Absorption Spectrometry. Journal of Agricultural and Food Chemistry, 1997, 45, 1808-1811.	2.4	50
152	On the origin of organolead compounds in wine. Science of the Total Environment, 1994, 153, 247-252.	3.9	28
153	Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception. , 0, , \cdot		13