Kamaladin Gharanjig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2449591/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Eco-friendly single bath dyeing of wool yarns with extracted cochineal dye: optimization and additives effect. Pigment and Resin Technology, 2023, 52, 321-330.	0.9	2
2	Green Dyeing of Wool Yarns with Yellow and Black Myrobalan Extract as Bio-mordant with Natural Dyes. Journal of Natural Fibers, 2022, 19, 3893-3915.	3.1	24
3	Synthesis and characterization of novel fluorescent reactive dyes for dyeing of cotton fabrics. Journal of the Textile Institute, 2022, 113, 595-605.	1.9	2
4	Environmentally Dyeing Using Dried Walnut Husk as Bio-Mordant: Investigation of Creating New Red and Yellow Shades on Wool. Journal of Natural Fibers, 2022, 19, 10953-10963.	3.1	6
5	Enhanced thermal stability of anthocyanins through natural polysaccharides from Angum gum and cress seed gum. Journal of Food Science, 2022, 87, 585-598.	3.1	9
6	Introduction of new configuration of dyes contain indigo group for dye-sensitized solar cells: DFT and photovoltaic study. Optical Materials, 2022, 124, 111999.	3.6	12
7	Effect of molecular composition of comb-like polycarboxylate dispersants on hydrophobic dye dispersion properties. Journal of Molecular Liquids, 2022, 350, 118615.	4.9	7
8	Green miles in dyeing technology: metal-rich pumpkin extracts in aid of natural dyes. Environmental Science and Pollution Research, 2022, 29, 50608-50616.	5.3	12
9	Environmentally friendly dyeing of wool yarns using of combination of bioâ€mordants and natural dyes. Environmental Progress and Sustainable Energy, 2022, 41, .	2.3	9
10	A novel efficient method for eco-friendly deep dyeing of wool yarns by extracted madder dyes in the presence of additives. Industrial Crops and Products, 2022, 183, 114970.	5.2	11
11	The effect of ultrasound on environmentally extraction and dyeing of wool yarns. Journal of Engineered Fibers and Fabrics, 2022, 17, 155892502211044.	1.0	3
12	Cleaner colorant extraction and environmentally wool dyeing using oak as eco-friendly mordant. Environmental Science and Pollution Research, 2021, 28, 7249-7260.	5.3	41
13	Effect of zinc oxide quantum dots on the photovoltaic properties of natural dyeâ€sensitized solar cells. International Journal of Energy Research, 2021, 45, 4170-4183.	4.5	8
14	1,8-Naphthalimide Derivatives as Dyes for Textile and Polymeric Materials: A Review. Fibers and Polymers, 2021, 22, 2368-2379.	2.1	8
15	New engineered and environmentally friendly dyeâ€sensitized solar cells: Efficient extraction of dyes from Cytisus, <i>Alcea rosea</i> , and Roselle. International Journal of Energy Research, 2020, 44, 309-324.	4.5	4
16	Synthesis, spectral characteristics and sensor ability of new polyamidoamine dendrimers, modified with curcumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117554.	3.9	8
17	New D–A–π–A organic photo-sensitizer with thioindoxyl group for efficient dye-sensitized solar cells. Chemical Papers, 2020, 74, 1487-1494.	2.2	5
18	Treating wool fibers with chitosan-based nano-composites for enhancing the antimicrobial properties. Applied Nanoscience (Switzerland), 2020, 10, 1219-1229.	3.1	22

KAMALADIN GHARANJIG

#	Article	IF	CITATIONS
19	Functionalization of PAMAM dendrimers with curcumin: Synthesis, characterization, fluorescent improvement and application on PET polymer. Dyes and Pigments, 2020, 174, 108081.	3.7	15
20	Novel complex coacervates based on Zedo gum, cress seed gum and gelatin for loading of natural anthocyanins. International Journal of Biological Macromolecules, 2020, 164, 3349-3360.	7.5	21
21	Green Dyeing of Wool Fibers with Madder: Study of Combination of Two Biomordant on K/S and Fastness. Fibers and Polymers, 2020, 21, 2036-2041.	2.1	18
22	Modified PAMAM dendrimers as a matrix for the photostabilization of curcumin. New Journal of Chemistry, 2020, 44, 17112-17121.	2.8	6
23	Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran. Journal of Alloys and Compounds, 2020, 828, 154329.	5.5	40
24	Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules, 2020, 148, 31-40.	7.5	28
25	Environmentally friendly dye for dye-sensitized solar cells from roots and stems of Berberis vulgaris. International Journal of Environmental Science and Technology, 2019, 16, 4019-4034.	3.5	6
26	Improving the photostability of curcumin using functional star-shaped polyamidoamine dendrimer: Application on PET. Materials Today Communications, 2019, 21, 100620.	1.9	12
27	Effect of edible antioxidants on chemical stability of ß-carotene loaded nanostructured lipid carriers. LWT - Food Science and Technology, 2019, 113, 108272.	5.2	11
28	Cure Index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity. Progress in Organic Coatings, 2019, 135, 176-184.	3.9	60
29	Use of pomegranate peels and walnut green husks as the green antimicrobial agents to reduce the consumption of inorganic nanoparticles on wool yarns. Journal of Cleaner Production, 2019, 231, 1463-1473.	9.3	36
30	Effects of the side chain density of polycarboxylate dispersants on dye dispersion properties. Coloration Technology, 2019, 135, 160-168.	1.5	13
31	Inorganic nanoparticles and natural dyes for production of antimicrobial and antioxidant wool fiber. 3 Biotech, 2019, 9, 456.	2.2	7
32	Synthesis and application of some novel fluorescent heterocyclic disperse dyestuffs based on phenothiazine on polyester. Arabian Journal of Chemistry, 2019, 12, 2069-2076.	4.9	12
33	Extraction and application of natural pigments for fabrication of green dye-sensitized solar cells. Opto-electronics Review, 2018, 26, 165-171.	2.4	36
34	The Use of Sumac as a Natural Mordant in Green Production of Iranian Carpet. Fibers and Polymers, 2018, 19, 1908-1912.	2.1	18
35	Compatibility of Natural Dyes on Aluminum Pre-Mordanted Woolen Yarns by Determination of Diffusion Coefficient. Fibers and Polymers, 2018, 19, 1663-1669.	2.1	10
36	In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration?. Energy, 2017, 134, 864-870.	8.8	34

KAMALADIN GHARANJIG

#	Article	IF	CITATIONS
37	Novel self-coloured polymers based on new fluorescent naphthalimide derivatives: synthesis, characterisation and photophysical properties. Pigment and Resin Technology, 2017, 46, 244-250.	0.9	3
38	Investigation of photovoltaic properties of nanostructure indoline dye-sensitised solar cells using changes in assembling materials. Pigment and Resin Technology, 2017, 46, 393-398.	0.9	2
39	Characterization of a green and environmentally friendly sensitizer for a low cost dye-sensitized solar cell. Opto-electronics Review, 2017, 25, 93-98.	2.4	16
40	Effects of isomerism on near infrared properties of perylene bisimide derivatives. Journal of Coatings Technology Research, 2017, 14, 207-214.	2.5	20
41	The comparison of spectra and dyeing properties of new azonaphthalimide with analogues azobenzene dyes on natural and synthetic polymers. Arabian Journal of Chemistry, 2017, 10, S3284-S3291.	4.9	4
42	A cleaner and eco-benign process for wool dyeing with madder, Rubia tinctorum L., root natural dye. International Journal of Environmental Science and Technology, 2016, 13, 2569-2578.	3.5	39
43	Chitosan-polypropylene imine dendrimer hybrid: a new ecological biomordant for cochineal dyeing of wool. Environmental Chemistry Letters, 2016, 14, 533-539.	16.2	32
44	Synthesis, characterization and near infra-red properties of perylenebisimide derivatives. Progress in Organic Coatings, 2016, 101, 297-304.	3.9	24
45	A novel Ag + cation sensor based on polyamidoamine dendrimer modified with 1,8-naphthalimide derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 154, 207-214.	3.9	18
46	Effect of substituents moiety in organic sensitiser based on carbazole on the performance of nanostructure dye-sensitised solar cells. Pigment and Resin Technology, 2015, 44, 292-299.	0.9	2
47	Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides. Biotechnology Progress, 2015, 31, 1086-1095.	2.6	18
48	Study of the Influence of Gemini Cationic Surfactants on the Dyeing and Fastness Properties of Polyester Fabrics Using Naphthalimide Dyes. Journal of Surfactants and Detergents, 2015, 18, 47-54.	2.1	9
49	Grafting of prepared chitosan–poly(propylene) imines dendrimer hybrid as a biopolymer onto cotton and its antimicrobial property. Journal of Industrial and Engineering Chemistry, 2015, 28, 78-85.	5.8	13
50	Novel organic dyes based on thioindigo for dye-sensitized solar cells. Dyes and Pigments, 2015, 123, 147-153.	3.7	33
51	A novel utilisation of principal component analysis to optimise sorption isotherms and determine diffusion coefficients of five naphthalimide disperse dyes on polyester fibres. Canadian Journal of Chemical Engineering, 2014, 92, 553-562.	1.7	1
52	Synthesis and Characterization of Two New Organic Dyes for Dye-Sensitized Solar Cells. Synthetic Communications, 2014, 44, 779-787.	2.1	20
53	Optimising by response surface methodology the dyeing of polyester with a liposome-encapsulated disperse dye. Coloration Technology, 2014, 130, 86-92.	1.5	8
54	Synthesis, Characterization, and Photo-Physical Properties of Dendrimers Modified With 1,8-Naphthalimide Derivatives as Novel Fluorescent pH Sensors. IEEE Sensors Journal, 2014, 14, 2889-2896.	4.7	17

#	Article	IF	CITATIONS
55	Facile synthesis of 4-nitro-N-substituted-1,8-naphthalimide derivatives using ultrasound in aqueous media. Green Chemistry Letters and Reviews, 2014, 7, 174-178.	4.7	4
56	Study on dyeing and fastness properties of wool–polyester blend fabrics using novel mono azo-naphthalimide dyes. Journal of the Textile Institute, 2014, 105, 52-58.	1.9	10
57	Surface alteration of polyamide fibers by polyamidoamine dendrimers and optimization of treatment process using neural network towards improving their dyeing properties. Dyes and Pigments, 2014, 111, 30-38.	3.7	16
58	Dye removal from coloredâ€ŧextile wastewater using chitosanâ€PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. Journal of Applied Polymer Science, 2013, 127, 2607-2619.	2.6	86
59	Stability of Dye Dispersions in the Presence of Some Ecoâ€Friendly Dispersing Agents. Journal of Surfactants and Detergents, 2013, 16, 849-856.	2.1	6
60	Application of a biopolymer chitosan-poly(propylene)imine dendrimer hybrid as an antimicrobial agent on the wool fabrics. Iranian Polymer Journal (English Edition), 2013, 22, 931-940.	2.4	25
61	Removal of anionic dyes from aqueous solution by modified alginate. Desalination and Water Treatment, 2013, 51, 2253-2260.	1.0	4
62	Preparation of chitosan-ethyl acrylate as a biopolymer adsorbent for basic dyes removal from colored solutions. Journal of Environmental Chemical Engineering, 2013, 1, 406-415.	6.7	58
63	Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chemistry, 2013, 141, 117-123.	8.2	124
64	Antimicrobial properties of treated cotton fabrics with non-toxic biopolymers and their dyeing with safflower and walnut hulls. Iranian Polymer Journal (English Edition), 2013, 22, 843-851.	2.4	10
65	A New Method for Clearing Dyed Polyester Fabrics by Gemini Cationic Surfactants. Journal of Surfactants and Detergents, 2013, 16, 95-104.	2.1	2
66	Stability of Dye Dispersions in the Presence of Various Surface Active Agents and Additives. Journal of Dispersion Science and Technology, 2013, 34, 381-388.	2.4	12
67	EFFECT OF SURFACTANTS ON KINETICS OF $\hat{1}^2$ -CAROTENE PHOTODEGRADATION IN EMULSIONS. Chemical Engineering Communications, 2013, 200, 437-447.	2.6	8
68	Synthesis of a novel fluorescent coloured copolymer based on 4-butylthio-1,8-naphthalimide. Coloration Technology, 2012, 128, 218-222.	1.5	7
69	Synthesis and application of some novel antimicrobial monoazonaphthalimide dyes: synthesis and characterisation. Coloration Technology, 2012, 128, 270-275.	1.5	11
70	Synthesis, characterization and evaluation of efficiency of new hybrid Pc/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation. Applied Catalysis A: General, 2012, 411-412, 139-145.	4.3	35
71	A new polymerizable fluorescent PET chemosensor of fluoride (Fâ^') based on naphthalimide–thiourea dye. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 90, 85-92. 	3.9	55
72	Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO2 nanocrystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 92, 148-153.	3.9	34

#	Article	IF	CITATIONS
73	Solubility of Two Disperse Dyes Derived from N-Alkyl and N-Carboxylic Acid Naphthalimides in the Presence of Gemini Cationic Surfactants. Journal of Surfactants and Detergents, 2011, 14, 381-389.	2.1	28
74	Dyeing and fastness properties of polyamide fabrics using some acidâ€based monoazo disperse dyes. Journal of Applied Polymer Science, 2011, 122, 3390-3395.	2.6	13
75	Reactive dye removal from wastewater using a chitosan nanodispersion. Desalination, 2011, 271, 225-230.	8.2	59
76	Synthesis and photophysical properties of some novel fluorescent dyes based on naphthalimide derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 44-50.	3.9	53
77	Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye. Desalination, 2010, 257, 124-128.	8.2	80
78	Equilibrium and kinetic studies of the cationic dye removal capability of a novel biosorbent <i>Tamarindus indica</i> from textile wastewater. Coloration Technology, 2010, 126, 261-268.	1.5	28
79	Laboratory studies and CFD modeling of photocatalytic degradation of colored textile wastewater by titania nanoparticles. Desalination and Water Treatment, 2009, 1, 312-317.	1.0	20
80	Synthesis and Application of Some Alkaliâ€Clearable Azo Disperse Dyes Based on Naphthalimide Derivatives. Journal of the Chinese Chemical Society, 2009, 56, 1035-1042.	1.4	17
81	Synthesis and evaluation of a series of novel monoazo disperse dyes derived from N-carboxylic acid-1,8-naphthalimide on poly(ethylene terphthalate). Fibers and Polymers, 2009, 10, 446-451.	2.1	16
82	Purification of water containing agricultural organophosphorus pollutant using titania nanophotocatalysis: Laboratory studies and numerical modeling. Desalination, 2008, 230, 183-192.	8.2	15
83	Synthesis, spectral properties and application of novel monoazo disperse dyes derived from N-ester-1,8-naphthalimide to polyester. Dyes and Pigments, 2008, 76, 684-689.	3.7	73
84	Novel hydrolysable azo disperse dyes based on <i>N</i> â€esterâ€1,8â€naphthalimide: dyeing of polyester–cotton blends. Coloration Technology, 2008, 124, 295-300.	1.5	14
85	Measurement and Correlation of Solubilities of Some Disperse Azo Dyes in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2008, 53, 634-638.	1.9	11
86	Synthesis and Characterization of Novel Monoazo Naphthalimide Disperse Dyes Containing Carboxylic Acid Group with High Heat Fastness Properties. Journal of the Chinese Chemical Society, 2008, 55, 1300-1307.	1.4	11
87	Synthesis and Characterization of Novel Monoazo Nâ€Esterâ€1,8â€Naphthalimide Disperse Dyestuffs. Journal of the Chinese Chemical Society, 2007, 54, 1021-1028.	1.4	9
88	Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. Journal of Hazardous Materials, 2007, 145, 65-71.	12.4	115
89	Nanophotocatalysis using immobilized titanium dioxide nanoparticle. Materials Research Bulletin, 2007, 42, 797-806.	5.2	107
90	Synthesis and spectroscopic studies of some naphthalimide based disperse azo dyestuffs for the dyeing of polyester fibres. Dyes and Pigments, 2006, 69, 79-92.	3.7	53

#	Article	IF	CITATIONS
91	Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 125-131.	4.7	97
92	Microwave-assisted rapid synthesis of 1,4-diketo-pyrrolo[3,4-]-pyrroles' derivatives under solvent-free conditions. Dyes and Pigments, 2006, 71, 68-72.	3.7	20
93	Synthesis and Characterization of Some Monoazo Disperse Dyestuffs Based on Naphthalimide Derivatives for Dyeing of Polyester Fabrics. Journal of the Chinese Chemical Society, 2005, 52, 495-502.	1.4	6
94	Dyeing of Cotton Fabrics with Novel Fluorescent Reactive Dyes Based on Fluorescein: Dyeing and Fluorescent Properties, Adsorption Isotherms, and Kinetic Studies. Journal of Natural Fibers, 0, , 1-18.	3.1	1