Unai Artetxe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2449493/publications.pdf Version: 2024-02-01

		430754	434063
32	1,353	18	31
papers	citations	h-index	g-index
33	33	33	1816
all docs	docs citations	times ranked	citing authors

ΠΝΛΙ ΔΟΤΕΤΥΕ

#	Article	IF	CITATIONS
1	Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Environmental Research, 2021, 194, 110666.	3.7	21
2	Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy. Processes, 2021, 9, 572.	1.3	5
3	Application of in situ bioremediation strategies in soils amended with sewage sludges. Science of the Total Environment, 2021, 766, 144099.	3.9	22
4	Mycorrhizal-Assisted Phytoremediation and Intercropping Strategies Improved the Health of Contaminated Soil in a Peri-Urban Area. Frontiers in Plant Science, 2021, 12, 693044.	1.7	15
5	In situ phytomanagement with Brassica napus and bio-stabilised municipal solid wastes is a suitable strategy for redevelopment of vacant urban land. Urban Forestry and Urban Greening, 2020, 47, 126550.	2.3	16
6	Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon, 2020, 6, e04550.	1.4	37
7	Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. New Phytologist, 2020, 226, 741-759.	3.5	34
8	A field portable method for the semiâ€quantitative estimation of dehydration tolerance of photosynthetic tissues across distantly related land plants. Physiologia Plantarum, 2019, 167, 540-555.	2.6	18
9	Effectiveness and ecotoxicity of zero-valent iron nanoparticles during rhizoremediation of soil contaminated with Zn, Cu, Cd and diesel. Data in Brief, 2018, 17, 47-56.	0.5	11
10	Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Science of the Total Environment, 2018, 618, 347-356.	3.9	80
11	How Valuable Are Organic Amendments as Tools for the Phytomanagement of Degraded Soils? The Knowns, Known Unknowns, and Unknowns. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	58
12	Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?. Molecules, 2018, 23, 1741.	1.7	5
13	Photoprotective Strategies of Mediterranean Plants in Relation to Morphological Traits and Natural Environmental Pressure: A Meta-Analytical Approach. Frontiers in Plant Science, 2017, 8, 1051.	1.7	42
14	Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Scientific Reports, 2016, 6, 28257.	1.6	83
15	Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Science of the Total Environment, 2016, 562, 480-492.	3.9	72
16	Dynamic Quality Index for agricultural soils based on fuzzy logic. Ecological Indicators, 2016, 60, 678-692.	2.6	28
17	Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests. AoB PLANTS, 2015, 7, plv042.	1.2	14
18	Internal and external factors affecting photosynthetic pigment composition in plants: a metaâ€analytical approach. New Phytologist, 2015, 206, 268-280.	3.5	202

UNAI ARTETXE

#	Article	IF	CITATIONS
19	Opening Pandora's box: cause and impact of errors on plant pigment studies. Frontiers in Plant Science, 2015, 6, 148.	1.7	12
20	Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. Journal of Geochemical Exploration, 2014, 145, 181-189.	1.5	77
21	Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. Journal of Experimental Botany, 2013, 64, 3033-3043.	2.4	86
22	Patterns of spatioâ€ŧemporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses. Physiologia Plantarum, 2012, 144, 289-301.	2.6	15
23	Native Plant Communities in an Abandoned Pb-Zn Mining Area of Northern Spain: Implications for Phytoremediation and Germplasm Preservation. International Journal of Phytoremediation, 2011, 13, 256-270.	1.7	80
24	Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations. Photosynthesis Research, 2009, 101, 77-88.	1.6	25
25	Diagnosing the Impact of Traffic on Roadside Soils Through Chemometric Analysis on the Concentrations of More Than 60 Metals Measured by ICP/MS. Alliance for Global Sustainability Bookseries, 2009, , 329-336.	0.2	4
26	Do light acclimation mechanisms reduce the effects of light-dependent herbicides in duckweed (Lemna) Tj ETQq	0 0 0 rgBT 0.8	/Overlock 10
27	Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza, 2004, 14, 11-18.	1.3	50
28	Regulation of the xanthophyll cycle pool size in duckweed (Lemna minor) plants. Physiologia Plantarum, 2002, 116, 121-126.	2.6	23
29	Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiology and Biochemistry, 2002, 40, 859-863.	2.8	66
30	Diurnal changes in antioxidant and carotenoid composition in the Mediterranean schlerophyll tree Quercus ilex (L) during winter. Plant Science, 1999, 143, 125-133.	1.7	94
31	Role of Photoprotective Systems of Holm-Oak (Quercus ilex) in the Adaptation to Winter Conditions. Journal of Plant Physiology, 1999, 155, 625-630.	1.6	54

Aldibereko teknika biologikoen bitartezko lurzoru kutsatuen erremediazioa. Ekaia (journal), 0, , . 0.0 0