
## Michael G Milgroom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2449384/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genetic Differentiation of <i>Verticillium dahliae</i> Populations Recovered from Symptomatic and Asymptomatic Hosts. Phytopathology, 2021, 111, 149-159.                                                                                        | 2.2 | 9         |
| 2  | Microevolution in the pansecondary metabolome of <i>Aspergillus flavus</i> and its potential macroevolutionary implications for filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1 | 34        |
| 3  | The Frequency of Sex: Population Genomics Reveals Differences in Recombination and Population Structure of the Aflatoxin-Producing Fungus Aspergillus flavus. MBio, 2020, 11, .                                                                  | 4.1 | 27        |
| 4  | Genome Sequence of the Chestnut Blight Fungus <i>Cryphonectria parasitica</i> EP155: A Fundamental<br>Resource for an Archetypical Invasive Plant Pathogen. Phytopathology, 2020, 110, 1180-1188.                                                | 2.2 | 34        |
| 5  | Fitness Cost of Aflatoxin Production in Aspergillus flavus When Competing with Soil Microbes Could<br>Maintain Balancing Selection. MBio, 2019, 10, .                                                                                            | 4.1 | 21        |
| 6  | Population Subdivision and the Frequency of Aflatoxigenic Isolates in Aspergillus flavus in the United States. Phytopathology, 2019, 109, 878-886.                                                                                               | 2.2 | 8         |
| 7  | Population Genetics of <i>Verticillium dahliae</i> in Iran Based on Microsatellite and Single<br>Nucleotide Polymorphism Markers. Phytopathology, 2018, 108, 780-788.                                                                            | 2.2 | 9         |
| 8  | Balancing selection at nonself recognition loci in the chestnut blight fungus, Cryphonectria parasitica, demonstrated by trans-species polymorphisms, positive selection, and even allele frequencies. Heredity, 2018, 121, 511-523.             | 2.6 | 14        |
| 9  | Balancing selection for aflatoxin in <i>Aspergillus flavus</i> is maintained through interference competition with, and fungivory by insects. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172408.                      | 2.6 | 54        |
| 10 | Clonal Expansion and Migration of a Highly Virulent, Defoliating Lineage of <i>Verticillium<br/>dahliae</i> . Phytopathology, 2016, 106, 1038-1046.                                                                                              | 2.2 | 34        |
| 11 | Population Genomics of Fungal and Oomycete Pathogens. Annual Review of Phytopathology, 2016, 54, 323-346.                                                                                                                                        | 7.8 | 96        |
| 12 | Aphid vector population density determines the emergence of necrogenic satellite RNAs in populations of cucumber mosaic virus. Journal of General Virology, 2016, 97, 1453-1457.                                                                 | 2.9 | 6         |
| 13 | Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host. PLoS Pathogens, 2014, 10, e1004293.                                                                                               | 4.7 | 65        |
| 14 | Recombination between Clonal Lineages of the Asexual Fungus Verticillium dahliae Detected by<br>Genotyping by Sequencing. PLoS ONE, 2014, 9, e106740.                                                                                            | 2.5 | 95        |
| 15 | Clonal population structure and introductions of the chestnut blight fungus, Cryphonectria parasitica, in Asturias, northern Spain. European Journal of Plant Pathology, 2011, 131, 67-79.                                                       | 1.7 | 20        |
| 16 | Heterokaryons and parasexual recombinants of Cryphonectria parasitica in two clonal populations in southeastern Europe. Fungal Genetics and Biology, 2009, 46, 849-854.                                                                          | 2.1 | 36        |
| 17 | Clonal population structure of the chestnut blight fungus in expanding ranges in southeastern<br>Europe. Molecular Ecology, 2008, 17, 4446-4458.                                                                                                 | 3.9 | 87        |
| 18 | High diversity of vegetative compatibility types inCryphonectria parasiticain Japan and China.<br>Mycologia, 2007, 99, 279-284.                                                                                                                  | 1.9 | 47        |

MICHAEL G MILGROOM

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Markers linked to vegetative incompatibility (vic) genes and a region of high heterogeneity and reduced recombination near the mating type locus (MAT) in Cryphonectria parasitica. Fungal Genetics and Biology, 2006, 43, 453-463. | 2.1 | 32        |
| 20 | Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic)<br>inCryphonectria parasitica. Mycologia, 2006, 98, 43-50.                                                                       | 1.9 | 14        |
| 21 | Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) in<br>Cryphonectria parasitica. Mycologia, 2006, 98, 43-50.                                                                      | 1.9 | 26        |
| 22 | BIOLOGICAL CONTROL OF CHESTNUT BLIGHT WITH HYPOVIRULENCE: A Critical Analysis. Annual Review of Phytopathology, 2004, 42, 311-338.                                                                                                  | 7.8 | 409       |
| 23 | Recombination and Migration of <i>Cryphonectria hypovirus 1</i> as Inferred From Gene Genealogies and the Coalescent. Genetics, 2004, 166, 1611-1629.                                                                               | 2.9 | 14        |
| 24 | Persistence of Cryphonectria hypoviruses after their release for biological control of chestnut<br>blight in West Virginia forests. Forest Pathology, 2002, 32, 345-356.                                                            | 1.1 | 14        |
| 25 | The mating system of the fungus Cryphonectria parasitica: selfing and self-incompatibility. Heredity, 2001, 86, 134-143.                                                                                                            | 2.6 | 61        |
| 26 | Genetic Control of Horizontal Virus Transmission in the Chestnut Blight Fungus, <i>Cryphonectria parasitica</i> . Genetics, 2001, 159, 107-118.                                                                                     | 2.9 | 188       |
| 27 | Variation in Tolerance and Virulence in the Chestnut Blight Fungus-Hypovirus Interaction. Applied and<br>Environmental Microbiology, 2000, 66, 4863-4869.                                                                           | 3.1 | 91        |
| 28 | Origin, genetic diversity, and population structure of <i>Nectria coccinea</i> var. <i>faginata</i> in<br>North America. Mycologia, 1999, 91, 583-592.                                                                              | 1.9 | 20        |
| 29 | Genetics of Vegetative Incompatibility in <i>Cryphonectria parasitica</i> . Applied and Environmental Microbiology, 1998, 64, 2988-2994.                                                                                            | 3.1 | 176       |
| 30 | Potential diversity in vegetative compatibility types of Ophiostoma novo-ulmi in North America.<br>Mycologia, 1997, 89, 722-726.                                                                                                    | 1.9 | 17        |
| 31 | RECOMBINATION AND THE MULTILOCUS STRUCTURE OF FUNGAL POPULATIONS. Annual Review of Phytopathology, 1996, 34, 457-477.                                                                                                               | 7.8 | 496       |
| 32 | Intercontinental population structure of the chestnut blight fungus, <i>Cryphonectria parasitica</i> .<br>Mycologia, 1996, 88, 179-190.                                                                                             | 1.9 | 109       |
| 33 | Estimation of the outcrossing rate in the chestnut blight fungus, Cryphonectria parasitica. Heredity, 1993, 70, 385-392.                                                                                                            | 2.6 | 54        |