Ana Carolina de Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2449293/publications.pdf

Version: 2024-02-01

70 papers 22,414 citations

38 h-index 64 g-index

71 all docs

71 docs citations

71 times ranked

31712 citing authors

#	Article	IF	CITATIONS
1	Ultrasensitive magnetogenoassay for detection of microRNA for diagnosis of metastatic lymph nodes in head and neck cancer using disposable electrodes. Sensors and Actuators B: Chemical, 2022, 352, 131040.	4.0	4
2	Accuracy and Clinical Relevance of Intra-Tumoral Fusobacterium nucleatum Detection in Formalin-Fixed Paraffin-Embedded (FFPE) Tissue by Droplet Digital PCR (ddPCR) in Colorectal Cancer. Diagnostics, 2022, 12, 114.	1.3	3
3	Human Papillomavirus DNA Detection by Droplet Digital PCR in Formalin-Fixed Paraffin-Embedded Tumor Tissue from Oropharyngeal Squamous Cell Carcinoma Patients. Molecular Diagnosis and Therapy, 2021, 25, 59-70.	1.6	6
4	The Role of <i>Fusobacterium nucleatum</i> in Colorectal Carcinogenesis. Pathobiology, 2021, 88, 127-140.	1.9	15
5	DNA Methylation Markers from Negative Surgical Margins Can Predict Recurrence of Oral Squamous Cell Carcinoma. Cancers, 2021, 13, 2915.	1.7	11
6	HPV-Induced Oropharyngeal Squamous Cell Carcinomas in Brazil: Prevalence, Trend, Clinical, and Epidemiologic Characterization. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1697-1707.	1.1	5
7	A Nanomechanical Genosensor Using Functionalized Cantilevers to Detect the Cancer Biomarkers miRNA-203 and miRNA-205. IEEE Sensors Journal, 2020, 20, 2860-2867.	2.4	6
8	Feasibility of methylated <scp>ctDNA</scp> detection in plasma samples of oropharyngeal squamous cell carcinoma patients. Head and Neck, 2020, 42, 3307-3315.	0.9	9
9	Impact of genetic variants in clinical outcome of a cohort of patients with oropharyngeal squamous cell carcinoma. Scientific Reports, 2020, 10, 9970.	1.6	7
10	TERT Promoter Mutation C228T Increases Risk for Tumor Recurrence and Death in Head and Neck Cancer Patients. Frontiers in Oncology, 2020, 10, 1275.	1.3	18
11	In-depth transcriptome reveals the potential biotechnological application of Bothrops jararaca venom gland. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2020, 26, e20190058.	0.8	4
12	Clinical and Molecular Characterization of Surgically Treated Oropharynx Squamous Cell Carcinoma Samples. Pathology and Oncology Research, 2019, 25, 1047-1058.	0.9	11
13	Microbiota Profile and Impact of Fusobacterium nucleatum in Colorectal Cancer Patients of Barretos Cancer Hospital. Frontiers in Oncology, 2019, 9, 813.	1.3	43
14	The role of single-nucleotide polymorphism (SNPs) in toxicity of induction chemotherapy based on cisplatin and paclitaxel in patients with advanced head and neck cancer. Oral Oncology, 2019, 98, 48-52.	0.8	8
15	Mutation profiling of cancer drivers in Brazilian colorectal cancer. Scientific Reports, 2019, 9, 13687.	1.6	31
16	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	13.5	2,277
17	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
18	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	13.5	1,718

#	Article	IF	Citations
19	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	13.5	228
20	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	13.5	272
21	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	13.5	1,417
22	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	13.5	2,111
23	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14.	13.5	620
24	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	2.9	333
25	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	2.9	407
26	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	2.9	245
27	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	2.9	205
28	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	2.9	523
29	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	2.9	683
30	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	6.6	3,706
31	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 2018, 23, 172-180.e3.	2.9	119
32	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	2.9	83
33	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	2.9	801
34	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Reports, 2018, 23, 255-269.e4.	2.9	204
35	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	2.9	177
36	In vitro and in silico validation of CA3 and FHL1 downregulation in oral cancer. BMC Cancer, 2018, 18, 193.	1.1	6

#	Article	IF	Citations
37	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	2.9	605
38	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	2.9	284
39	IncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	7.7	400
40	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	7.7	750
41	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	7.7	396
42	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	7.7	478
43	Serum, plasma and saliva biomarkers for head and neck cancer. Expert Review of Molecular Diagnostics, 2018, 18, 85-112.	1,5	117
44	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-Î ² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	2.9	134
45	Microfluidic-Based Genosensor To Detect Human Papillomavirus (HPV16) for Head and Neck Cancer. ACS Applied Materials & Detect Human Papillomavirus (HPV16) for Head and Neck Cancer.	4.0	35
46	Methylation of the hsa-miR-124, SOX1, TERT, and LMX1A genes as biomarkers for precursor lesions in cervical cancer. Gynecologic Oncology, 2018, 150, 545-551.	0.6	44
47	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell, 2018, 34, 211-224.e6.	7.7	623
48	Construction and characterization of a new TRAIL soluble form, active at picomolar concentrations. Oncotarget, 2018, 9, 27233-27241.	0.8	5
49	MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget, 2017, 8, 9911-9921.	0.8	48
50	Genetic and epigenetic characterization of the BRCA1 gene in Brazilian women at-risk for hereditary breast cancer. Oncotarget, 2017, 8, 2850-2862.	0.8	4
51	Anti-EGFR Therapy: Strategies in Head and Neck Squamous Cell Carcinoma. Recent Patents on Anti-Cancer Drug Discovery, 2016, 11, 170-183.	0.8	15
52	Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. Journal of Translational Medicine, 2015, 13, 262.	1.8	50
53	Validation of methylation markers for diagnosis of oral cavity cancer. European Journal of Cancer, 2015, 51, 632-641.	1.3	44
54	Accuracy of microRNAs as markers for the detection of neck lymph node metastases in patients with head and neck squamous cell carcinoma. BMC Medicine, 2015, 13, 108.	2.3	33

#	Article	IF	CITATIONS
55	FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4+ T regulatory cells. Cancer Immunology, Immunotherapy, 2014, 63, 1189-1197.	2.0	65
56	Evaluation of the methylation profile of exfoliated cell samples from patients with head and neck squamous cell carcinoma. Head and Neck, 2014, 36, 631-637.	0.9	15
57	Methylation as a biomarker for head and neck cancer. Oral Oncology, 2014, 50, 587-592.	0.8	89
58	Abstract 1481: miR-296 as prognostic and predictive molecular marker for recurrence in early-stage laryngeal carcinoma treated with definitive radiotherapy. , 2014, , .		0
59	TIMP3 and CCNA1 hypermethylation in HNSCC is associated with an increased incidence of second primary tumors. Journal of Translational Medicine, 2013, 11, 316.	1.8	36
60	Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis, 2013, 34, 20-27.	1.3	52
61	PP033. Oral Oncology, 2013, 49, S104-S105.	0.8	O
62	Search for mutations in signaling pathways in head and neck squamous cell carcinoma. Oncology Reports, 2013, 30, 334-340.	1.2	18
63	Aberrant DNA methylation of ESR1 and p14ARF genes could be useful as prognostic indicators in osteosarcoma. OncoTargets and Therapy, 2013, 6, 713.	1.0	14
64	Clinical significance of molecular alterations in histologically negative surgical margins of head and neck cancer patients. Oral Oncology, 2012, 48, 240-248.	0.8	45
65	Abstract 5050: MicroRNAs profiling in salivary rinse from patients with head and neck squamous cells carcinoma. , 2012, , .		O
66	Abstract 4806: Claudindownregulation in head and neck squamous cell carcinoma (HNSCC) may be caused by aberrant promoter methylation. , 2011 , , .		0
67	Abstract 4808: Detection of aberrant DNA methylation in saliva samples as a predictor of recurrence in head and neck squamous cell carcinoma patients. , $2011, \ldots$		O
68	Claudinâ€7 downâ€regulation is an important feature in oral squamous cell carcinoma. Histopathology, 2010, 57, 689-698.	1.6	23
69	Abstract 2954: Overexpression of specific genes in surgical margins of head and neck squamous cell carcinoma patients may predict a significantly increased risk of recurrence. , 2010, , .		O
70	Abstract 4910: Identification of putative epigenetic markers for head and neck squamous cell carinoma recurrence., 2010,,.		0