
Anupam Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2448702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyrrole-pyridine chelating motif on the Î ² -carboline skeleton: Selective Zn2+ sensing via inhibition of ESIPT. Dyes and Pigments, 2022, 202, 110238.	3.7	5
2	Copper acetate catalysed C–C bond formation <i>en route</i> to the synthesis of spiro indanedione cyclopropylpyrazolones. Organic and Biomolecular Chemistry, 2022, , .	2.8	0
3	Pyrrolo[1,2-a]quinoxalines from chalcones: An alternate route. Tetrahedron Letters, 2021, 70, 153008.	1.4	4
4	Iodine assisted synthesis of CF ₃ appended spirodihydrofuryl/cyclopropyl oxindoles by changing the active methylene sources. Organic and Biomolecular Chemistry, 2020, 18, 9623-9631.	2.8	5
5	Total synthesis of the plant alkaloid racemic microthecaline A: first example of a natural product bearing a tricyclic quinoline-serrulatane scaffold. RSC Advances, 2019, 9, 23289-23294.	3.6	3
6	Functionalized Chitosan–Carbon Dots: A Fluorescent Probe for Detecting Trace Amount of Water in Organic Solvents. ACS Omega, 2019, 4, 11301-11311.	3.5	71
7	Fused Chromenoâ€Thieno/Furoâ€Pyridines as Potential Analogs of Lamellarin D and their Anticancer Activity Evaluation. ChemistrySelect, 2019, 4, 10726-10730.	1.5	9
8	Iron(III) catalyzed direct C–H functionalization at the C-3 position of chromone for the synthesis of fused chromeno-quinoline scaffolds. Tetrahedron Letters, 2019, 60, 1895-1898.	1.4	6
9	Metal-Enhanced Fluorescence Study in Aqueous Medium by Coupling Gold Nanoparticles and Fluorophores Using a Bilayer Vesicle Platform. ACS Omega, 2019, 4, 5983-5990.	3.5	43
10	Application of Polyphosphoric Acidâ€Mediated Acyl Migration for Regiospecific Synthesis of Diverse 2â€Acylpyrroles from Chalcones. Journal of Heterocyclic Chemistry, 2019, 56, 1283-1290.	2.6	2
11	Selective Sensing of Iron by Pyrrolo[2,3-c]Quinolines. Journal of Fluorescence, 2019, 29, 271-277.	2.5	6
12	Synthesis of 4‧ubstituted Pyrrolo[2, 3―c]quinolines via Microwaveâ€Assisted Câ€N Bond Formation. ChemistrySelect, 2018, 3, 5386-5389.	1.5	10
13	Oneâ€Step Synthesis of Fused Chromeno[4,3â€ <i>b</i>]pyrrolo[3,2â€ <i>h</i>]quinolinâ€7(1 <i>H</i>)â€One Compounds and their Anticancer Activity Evaluation. ChemistrySelect, 2017, 2, 2718-2721.	1.5	11
14	Oneâ€Pot Two Step Nazarovâ€Schmidt Rearrangement for the Synthesis of Fused δ‣actam Systems. ChemistrySelect, 2017, 2, 9744-9750.	1.5	2
15	FRET-Mediated Zn ²⁺ Sensing in Aqueous Micellar Solution: Application in Cellular Imaging and Molecular Logic Gate. ChemistrySelect, 2017, 2, 8731-8737.	1.5	5
16	Immobilized lipase from Lactobacillus plantarum in meat degradation and synthesis of flavor esters. Journal of Genetic Engineering and Biotechnology, 2017, 15, 331-334.	3.3	35
17	A straight forward and first total synthesis of Penilumamides B–D. Tetrahedron Letters, 2017, 58, 3347-3349.	1.4	6
18	Synthesis and anti-tubercular activity of fused thieno-/furo-quinoline compounds. RSC Advances, 2016, 6. 46073-46080.	3.6	23

#	Article	IF	CITATIONS
19	Zinc(II) Ion Sensing in Aqueous Micellar Solution Using Modified Bipyridineâ€Based "Turnâ€On― Fluorescent Probes and its Application in Bioimaging. ChemPlusChem, 2016, 81, 1339-1348.	2.8	14
20	Synthesis and anti-cancer activity of 1,4-disubstituted imidazo[4,5-c]quinolines. Organic and Biomolecular Chemistry, 2016, 14, 876-883.	2.8	28
21	Gold nanoparticle induced enhancement of molecular fluorescence for Zn^2+ detection in aqueous niosome solution. , 2016, , .		1
22	Selective detection of fluoride using fused quinoline systems: effect of pyrrole. RSC Advances, 2015, 5, 57231-57234.	3.6	15
23	Synthesis of 4-substituted oxazolo[4,5-c]quinolines by direct reaction at the C-4 position of oxazoles. Organic and Biomolecular Chemistry, 2015, 13, 2600-2605.	2.8	19
24	New class of antitubercular compounds: synthesis and anti-tubercular activity of 4-substituted pyrrolo[2,3-c]quinolines. Monatshefte Für Chemie, 2014, 145, 811-819.	1.8	30
25	Selective Zn2+ sensing using a modified bipyridine complex. RSC Advances, 2014, 4, 25605.	3.6	24
26	Rebeccamycin and Staurosporine Biosynthesis: Insight into the Mechanisms of the Flavinâ€Dependent Monooxygenases RebC and StaC. ChemBioChem, 2011, 12, 396-400.	2.6	23
27	Chloramphenicol Biosynthesis: The Structure of CmlS, a Flavin-Dependent Halogenase Showing a Covalent Flavin–Aspartate Bond. Journal of Molecular Biology, 2010, 397, 316-331.	4.2	103
28	Expression, purification and preliminary diffraction studies of CmlS. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 260-263.	0.7	4
29	Expression, purification and preliminary X-ray diffraction studies of RebC. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 980-982.	0.7	0
30	Influence of PEG Endgroup and Molecular Weight on Its Reactivity for Lipase-Catalyzed Polyester Synthesis. Biomacromolecules, 2006, 7, 1042-1048.	5.4	22
31	Abasic site stabilization by aromatic DNA base surrogates: High-affinity binding to a base-flipping DNA-methyltransferase. Pure and Applied Chemistry, 2004, 76, 1563-1570.	1.9	6
32	Polycyclic Aromatic DNA-Base Surrogates: High-Affinity Binding to an Adenine-Specific Base-Flipping DNA Methyltransferase. Angewandte Chemie - International Edition, 2003, 42, 3958-3960.	13.8	69
33	Highly efficient and selective biocatalytic acylation studies on triazolylsugars. Tetrahedron, 2003, 59, 10269-10277.	1.9	12
34	Novel Lipase-Catalysed Highly Selective Acetylation Studies on d-Arabino- and d-Threo-polyhydroxyalkyltriazoles. Bioorganic and Medicinal Chemistry, 2002, 10, 947-951.	3.0	9