Virginie Nazabal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2448640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nature Communications, 2012, 3, 1108.	12.8	215
2	Pulsed laser deposited alumina thin films. Ceramics International, 2016, 42, 1177-1182.	4.8	148
3	Chalcogenide Glass Optical Waveguides for Infrared Biosensing. Sensors, 2009, 9, 7398-7411.	3.8	135
4	Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy. Optical Materials, 2008, 31, 39-46.	3.6	131
5	Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers. Sensors and Actuators B: Chemical, 2015, 207, 518-525.	7.8	107
6	Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy. Materials Chemistry and Physics, 2012, 136, 935-941.	4.0	104
7	Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study. Journal of Applied Physics, 2009, 106, .	2.5	89
8	Optical characterization at 77 Âμm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Optics Express, 2016, 24, 23109.	3.4	84
9	Structure, nonlinear properties, and photosensitivity of (GeSe_2)_100-x(Sb_2Se_3)_x glasses. Optical Materials Express, 2014, 4, 525.	3.0	83
10	Fluoride and oxyfluoride glasses for optical applications. Journal of Fluorine Chemistry, 2012, 134, 18-23.	1.7	75
11	Evanescent wave optical micro-sensor based on chalcogenide glass. Sensors and Actuators B: Chemical, 2012, 173, 468-476.	7.8	74
12	From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies. Molecules, 2013, 18, 5373-5388.	3.8	70
13	Upconversion luminescence of transparent Er3+-doped chalcohalide glass–ceramics. Optical Materials, 2009, 31, 760-764.	3.6	68
14	Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films. Thin Solid Films, 2010, 518, 4941-4947.	1.8	61
15	Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers. Materials Letters, 2013, 101, 21-24.	2.6	61
16	Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sensors and Actuators B: Chemical, 2017, 242, 842-848.	7.8	56
17	Second-harmonic generation of thermally poled chalcogenide glass. Optics Express, 2005, 13, 789.	3.4	55
18	Photo-stability of pulsed laser deposited Ge_xAs_ySe_100-x-y amorphous thin films. Optics Express, 2010, 18, 22944.	3.4	55

#	Article	IF	CITATIONS
19	Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation. Advanced Functional Materials, 2007, 17, 3284-3294.	14.9	54
20	Optical properties of (GeSe2)100â^'(Sb2Se3) glasses in near- and middle-infrared spectral regions. Materials Research Bulletin, 2014, 51, 176-179.	5.2	54
21	Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films. International Journal of Applied Ceramic Technology, 2011, 8, 990-1000.	2.1	53
22	Chalcogenide optical fibers for mid-infrared sensing. Optical Engineering, 2014, 53, 027101.	1.0	53
23	RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy. Optical Materials Express, 2013, 3, 2112.	3.0	50
24	Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers. Sensors and Actuators B: Chemical, 2016, 229, 209-216.	7.8	49
25	Chalcogenide Glasses for Infrared Photonics. International Journal of Applied Glass Science, 2015, 6, 287-294.	2.0	48
26	Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.551¼m. Materials Research Bulletin, 2008, 43, 976-982.	5.2	45
27	Design of praseodymium-doped chalcogenide micro-disk emitting at 47 µm. Optics Express, 2017, 25, 7014.	3.4	45
28	Optical characteristics of pulsed laser deposited Ge–Sb–Te thin films studied by spectroscopic ellipsometry. Journal of Applied Physics, 2011, 109, .	2.5	41
29	CO2 Detection Using Microstructured Chalcogenide Fibers. Sensor Letters, 2009, 7, 745-749.	0.4	39
30	Chalcogenide coatings of Ge_15Sb_20S_65 and Te_20As_30Se_50. Applied Optics, 2008, 47, C114.	2.1	38
31	Structural analysis of RF sputtered Ge-Sb-Se thin films by Raman and X-ray photoelectron spectroscopies. Journal of Non-Crystalline Solids, 2016, 444, 64-72.	3.1	38
32	Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. Scientific Reports, 2017, 7, 3500.	3.3	38
33	Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films. Optical Materials Express, 2015, 5, 781.	3.0	37
34	High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling. Optics Express, 2006, 14, 1524.	3.4	36
35	Tb ³⁺ doped Ga ₅ Ge ₂₀ Sb ₁₀ Se _{65-x} Te _x (x = 0-375) chalcogenide glasses and fibers for MWIR and LWIR emissions. Optical Materials Express, 2018, 8, 2887.	3.0	36
36	Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers. Optical Materials, 2010, 33, 241-245.	3.6	35

#	Article	IF	CITATIONS
37	Dysprosium doped amorphous chalcogenide films prepared by pulsed laser deposition. Optical Materials, 2006, 29, 273-278.	3.6	33
38	Selenide sputtered films development for MIR environmental sensor. Optical Materials Express, 2016, 6, 2616.	3.0	33
39	Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization. Applied Physics Letters, 2009, 94, .	3.3	30
40	Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses. Journal of Luminescence, 2009, 129, 1148-1153.	3.1	30
41	IR emitting Dy 3+ doped chalcogenide fibers for in situ CO 2 monitoring in high pressure microsystems. International Journal of Greenhouse Gas Control, 2016, 55, 36-41.	4.6	30
42	Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films. Scientific Reports, 2016, 6, 26552.	3.3	30
43	Crystalline phase responsible for the permanent second-harmonic generation in chalcogenide glass-ceramics. Optical Materials, 2007, 30, 338-345.	3.6	29
44	Chemical Short-Range Order in Selenide and Telluride Glasses. Journal of Physical Chemistry B, 2016, 120, 9204-9214.	2.6	29
45	Pr3+-doped ZBLA fluoride glasses for visible laser emission. Optical Materials, 2011, 33, 980-984.	3.6	28
46	Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique. Optics Communications, 2017, 403, 352-357.	2.1	28
47	8  μm luminescence from a Tb ³⁺ GaGeSbSe fiber. Optics Letters, 2018, 43, 1211.	3.3	28
48	Thermally poled new borate glasses for second harmonic generation. Journal of Non-Crystalline Solids, 2001, 290, 73-85.	3.1	27
49	Kerr spatial solitons in chalcogenide waveguides. Optics Letters, 2009, 34, 1804.	3.3	27
50	Dy3+ doped GeGaSbS fluorescent fiber at 4.4Âμ4m for optical gas sensing: Comparison of simulation and experiment. Optical Materials, 2016, 61, 37-44.	3.6	27
51	Local motifs in GeS2–Ga2S3 glasses. Journal of Alloys and Compounds, 2016, 673, 149-157.	5.5	27
52	Co-doped Dy ³⁺ and Pr ³⁺ Ga ₅ Ge ₂₀ Sb ₁₀ S ₆₅ fibers for mid-infrared broad emission. Optics Letters, 2018, 43, 2893.	3.3	27
53	Sulphide GaxGe25â^'xSb10S65(x=,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguides. Journal of Applied Physics, 2008, 104, .	2.5	26
54	Photoinduced phenomena in amorphous As4Se3 pulsed laser deposited thin films studied by spectroscopic ellipsometry. Journal of Applied Physics, 2009, 106, 023509.	2.5	26

#	Article	IF	CITATIONS
55	Wavelength conversion in Er^3+ doped chalcogenide fibers for optical gas sensors. Optics Express, 2015, 23, 4163.	3.4	26
56	Nd ³⁺ :Ga-Ge-Sb-S glasses and fibers for luminescence in mid-IR: synthesis, structural characterization and rare earth spectroscopy. Optical Materials Express, 2018, 8, 1650.	3.0	26
57	Ga-modified As2Se3–Te glasses for active applications in IR photonics. Optical Materials, 2015, 46, 228-232.	3.6	25
58	7 to 8 µm emission from Sm ³⁺ doped selenide fibers. Optics Express, 2018, 26, 26462.	3.4	25
59	Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber. Optical Materials, 2009, 31, 1292-1295.	3.6	24
60	Laser ablation of AsxSe100â^'x chalcogenide glasses: Plume investigations. Applied Surface Science, 2009, 255, 5307-5311.	6.1	23
61	Network Rearrangement in Aglâ€Doped GeTe ₄ Glasses. Journal of the American Ceramic Society, 2015, 98, 1034-1039.	3.8	23
62	Luminescence at 2.8Âμm: Er3+-doped chalcogenide micro-waveguide. Optical Materials, 2016, 58, 390-397.	3.6	23
63	Amorphous Geâ€Sbâ€Se thin films fabricated by coâ€sputtering: Properties and photosensitivity. Journal of the American Ceramic Society, 2018, 101, 2877-2887.	3.8	23
64	Mid-infrared guided photoluminescence from integrated Pr3+-doped selenide ridge waveguides. Optical Materials, 2018, 75, 109-115.	3.6	23
65	Optical and structural properties of new chalcohalide glasses. Journal of Non-Crystalline Solids, 2008, 354, 1322-1326.	3.1	22
66	Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater. International Journal of Higher Education Management, 2017, 3, 23-29.	1.3	22
67	Laser ablation of (GeSe 2) 100â^'x (Sb 2 Se 3) x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics. Applied Surface Science, 2017, 418, 594-600.	6.1	22
68	All-optical carbon dioxide remote sensing using rare earth doped chalcogenide fibers. Optics and Lasers in Engineering, 2019, 122, 328-334.	3.8	22
69	Light trimming of a narrow bandpass filter based on a photosensitive chalcogenide spacer. Optics Express, 2008, 16, 373.	3.4	21
70	Relaxation properties of rare-earth ions in sulfide glasses: Experiment and theory. Physical Review B, 2006, 74, .	3.2	20
71	Aging process of photosensitive chalcogenide films deposited by electron beam deposition. Journal of Alloys and Compounds, 2011, 509, 7330-7336.	5.5	20
72	Dy3+ doped GaGeSbSe fiber long-wave infrared emission. Journal of Luminescence, 2020, 218, 116853.	3.1	20

#	Article	IF	CITATIONS
73	Amorphous Tm3+ doped sulfide thin films fabricated by sputtering. Optical Materials, 2010, 33, 220-226.	3.6	19
74	Low-power plasmon–soliton in realistic nonlinear planar structures. Optics Letters, 2012, 37, 4579.	3.3	19
75	Spectroscopic study and Judd–Ofelt analysis of Pr^3+-doped Zr–Ba–La–Al glasses in visible spectral range. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2032.	2.1	19
76	Atomic level structure of Ge-Sb-S glasses: Chemical short range order and long Sb-S bonds. Journal of Alloys and Compounds, 2019, 774, 1009-1016.	5.5	19
77	Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd-Ofelt approach. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 2588.	2.1	17
78	Plasma diagnostics in pulsed laser deposition of GaLaS chalcogenides. Applied Surface Science, 2013, 278, 352-356.	6.1	17
79	Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications. Thin Solid Films, 2013, 539, 226-232.	1.8	17
80	Effect of Ga incorporation in the As30Se50Te20 glass. Journal of Non-Crystalline Solids, 2014, 398-399, 19-25.	3.1	17
81	Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS. Journal of Chemical Physics, 2015, 142, 184501.	3.0	17
82	Photosensitive post tuning of chalcogenide Te20As30Se50 narrow bandpass filters. Optics Communications, 2008, 281, 3726-3731.	2.1	16
83	Laser desorption ionization timeâ€ofâ€flight mass spectrometry of erbiumâ€doped Gaâ€Geâ€Sbâ€S glasses. Rap Communications in Mass Spectrometry, 2014, 28, 1221-1232.	oid 1.5	16
84	Short range order in Ge-Ga-Se glasses. Journal of Alloys and Compounds, 2015, 651, 578-584.	5.5	16
85	Ge-Sb-Te Chalcogenide Thin Films Deposited by Nanosecond, Picosecond, and Femtosecond Laser Ablation. Nanomaterials, 2019, 9, 676.	4.1	16
86	Optical amplification of Pr^3+-doped ZBLA channel waveguides for visible Laser emission. Optics Express, 2012, 20, 25064.	3.4	15
87	Photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system. Scientific Reports, 2015, 5, 9310.	3.3	15
88	Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films. Applied Physics A: Materials Science and Processing, 2014, 117, 197-205.	2.3	14
89	Chemical order in Ga or Sb modified germanium sulfide glasses around stoichiometry: High-resolution XPS and Raman studies. Journal of Non-Crystalline Solids, 2018, 499, 237-244.	3.1	14
90	Ga–Ge–Te amorphous thin films fabricated by pulsed laser deposition. Thin Solid Films, 2013, 531, 454-459.	1.8	13

#	Article	IF	CITATIONS
91	Accurate Determination of Optical Functions of <scp><scp>Ge</scp></scp> – <scp>As</scp> – <scp>–<scp>Te</scp></scp> Glasses via Spectroscopic Ellipsometry. Journal of the American Ceramic Society, 2014, 97, 3044-3047.	3.8	13
92	Design of a Multimode Interferometer-Based Mid-Infrared Multispecies Gas Sensor. IEEE Sensors Journal, 2020, 20, 13426-13435.	4.7	12
93	Chemical order in Ge-Ga-Sb-Se glasses. Journal of Non-Crystalline Solids, 2018, 484, 49-56.	3.1	11
94	Comparative study of Er3+-doped Ga-Ge-Sb-S thin films fabricated by sputtering and pulsed laser deposition. Scientific Reports, 2020, 10, 7997.	3.3	11
95	Study of the Ge20Te80-xSex glassy structures by combining solid state NMR, vibrational spectroscopies and DFT modelling. Journal of Solid State Chemistry, 2021, 297, 122062.	2.9	11
96	(INVITED)Infrared luminescence of chalcogenide glasses doped with rare earth ions and their potential applications. Optical Materials: X, 2022, 15, 100168.	0.8	11
97	Propagation losses and gain measurements in erbium-doped fluoride glass channel waveguides by use of a double-pass technique. Applied Optics, 2005, 44, 4678.	2.1	9
98	Processing and characterization of new passive and active oxysulfide glasses in the Ge–Ga–Sb–S–O system. Journal of Solid State Chemistry, 2009, 182, 2646-2655.	2.9	9
99	Laser Desorption Ionization of As ₂ Ch ₃ (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion Trap Time-of-Flight Mass Spectrometry: A Comparative Study. Journal of the American Society for Mass Spectrometry, 2017, 28, 2569-2579.	2.8	9
100	Ge-free chalcogenide glasses based on Ga-Sb-Se and their stabilization by iodine incorporation. Journal of Non-Crystalline Solids, 2018, 481, 543-547.	3.1	9
101	Mass spectrometric investigation of amorphous Ga-Sb-Se thin films. Scientific Reports, 2019, 9, 10213.	3.3	9
102	Self-phase modulation and four-wave mixing in a chalcogenide ridge waveguide. Optical Materials Express, 2020, 10, 1440.	3.0	9
103	Gallium–lanthanum–sulphide amorphous thin films prepared by pulsed laser deposition. Materials Chemistry and Physics, 2009, 117, 23-25.	4.0	8
104	Laser Desorption Ionisation Timeâ€ofâ€Flight Mass Spectrometry of Chalcogenide Glasses from (GeSe ₂) _{100â^'<i>x</i>} (Sb ₂ Se ₃) _{<i>x</i>} System. Journal of the American Ceramic Society, 2015, 98, 4107-4110.	3.8	8
105	Effect of rare-earth doping on the free-volume structure of Ga-modified Te ₂₀ As ₃₀ Se ₅₀ glass. RSC Advances, 2016, 6, 22797-22802.	3.6	8
106	Xâ€ray photoelectron spectroscopy analysis of Ge–Sb–Se pulsed laser deposited thin films. Journal of the American Ceramic Society, 2018, 101, 3347-3356.	3.8	8
107	Co-sputtered Pr ³⁺ -doped Ga-Ge-Sb-Se active waveguides for mid-infrared operation. Optics Express, 2020, 28, 22511.	3.4	8
108	71Ga NMR in chalcogenide and chalco-halide glasses. Journal of Non-Crystalline Solids, 2014, 383, 216-221.	3.1	7

#	Article	IF	CITATIONS
109	The structure of near stoichiometric Ge-Ga-Sb-S glasses: A reverse Monte Carlo study. Journal of Non-Crystalline Solids, 2019, 505, 340-346.	3.1	7
110	Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Study. Sensors, 2021, 21, 2449.	3.8	7
111	Linear and nonlinear optical properties of co-sputtered Ge-Sb-Se amorphous thin films. Optics Letters, 2020, 45, 1523.	3.3	7
112	Amorphous Ge-Sb-Se-Te chalcogenide films fabrication for potential environmental sensing and nonlinear photonics. Journal of Materiomics, 2022, 8, 1009-1019.	5.7	7
113	Photo-excited desorption of multi-component systems: Application to chalcogenide glasses. Applied Surface Science, 2005, 248, 224-230.	6.1	6
114	Synthesis and characterization of GeS2Ga2S3MCl2 (, Cd) chalcohalide glasses. Solid State Sciences, 2005, 7, 303-309.	3.2	6
115	Erbium-doped germanium-based sulphide optical waveguide amplifier for near- and mid-IR. , 2009, , .		6
116	Photosensitivity of pulsed laser deposited Ge20As20Se60 and Ge10As30Se60 amorphous thin films. Materials Research Bulletin, 2013, 48, 3860-3864.	5.2	6
117	Photostability of pulsed-laser-deposited As_xTe_100-x (x=40, 50, 60) amorphous thin films. Optics Letters, 2017, 42, 1660.	3.3	6
118	Arsenic-Doped SnSe Thin Films Prepared by Pulsed Laser Deposition. ACS Omega, 2021, 6, 17483-17491.	3.5	6
119	GaTe–Sb2Te3 thin-films phase change characteristics. Optics Letters, 2020, 45, 1067.	3.3	6
120	Chalcogenide waveguide for IR optical range. , 2007, , .		5
121	Rare-earth-doped chalcogenide glasses for mid-IR gas sensor applications. , 2017, , .		5
122	Laser desorption ionization time-of-flight mass spectrometry of Ge Se1 chalcogenide glasses, their thin films, and Ge:Se mixtures. Journal of Non-Crystalline Solids, 2019, 509, 65-73.	3.1	5
123	Amorphous Ge-Bi-Se Thin Films: A Mass Spectrometric Study. Scientific Reports, 2019, 9, 19168.	3.3	5
124	Surface composition and micromasking effect during the etching of amorphous Ge-Sb-Se thin films in SF6 and SF6/Ar plasmas. Applied Surface Science, 2021, 549, 149192.	6.1	5
125	Prediction of fatty acids composition in the rainbow trout Oncorhynchus mykiss by using Raman micro-spectroscopy. Analytica Chimica Acta, 2022, 1191, 339212.	5.4	5
126	Four wave mixing in silicon hybrid and silicon heterogeneous micro photonic structures. Proceedings of SPIE, 2012, , .	0.8	4

#	Article	IF	CITATIONS
127	Second harmonic generation in chalcogenide glasses. , 2014, , 509-561.		4
128	Laser Desorption Ionization Timeâ€ofâ€Flight Mass Spectrometry of Glasses and Amorphous Films from Ge–As–Se System. Journal of the American Ceramic Society, 2016, 99, 3594-3599.	3.8	4
129	Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method. Optoelectronics Letters, 2016, 12, 199-202.	0.8	4
130	Nonlinear Self-Confined Plasmonic Beams: Experimental Proof. ACS Photonics, 2020, 7, 2562-2570.	6.6	4
131	Etching of GeSe ₂ chalcogenide glass and its pulsed laser deposited thin films in SF ₆ , SF ₆ /Ar and SF ₆ /O ₂ plasmas. Plasma Sources Science and Technology, 2020, 29, 105006.	3.1	4
132	Comparison of Clusters Produced from Sb ₂ Se ₃ Homemade Polycrystalline Material, Thin Films, and Commercial Polycrystalline Bulk Using Laser Desorption Ionization with Time of Flight Quadrupole Ion Trap Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2756-2761.	2.8	3
133	Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications. Science and Technology of Advanced Materials, 2020, 21, 11-24.	6.1	3
134	Amorphous Thin Film Deposition. Springer Handbooks, 2019, , 1293-1332.	0.6	3
135	Amorphous Ga–Sb–Se thin films fabricated by co-sputtering. Optics Letters, 2020, 45, 29.	3.3	3
136	Development of Praseodymium doped fluoride waveguide. , 2012, , .		2
137	Analysis of pulsed laser deposited amorphous chalcogenide film thickness distribution: Plume deflection angle dependence. Journal of Non-Crystalline Solids, 2018, 481, 409-411.	3.1	2
138	Deformation of a chalcogenide glass film under optical modulated excitation. Journal of Non-Crystalline Solids, 2020, 535, 119962.	3.1	2
139	Chalcogenide optical fibers for mid-infrared sensing: State of the art, future strategies. , 2014, , .		1
140	Design of rare-earth doped chalcogenide microresonators for biosensing in Mid-IR. , 2016, , .		1
141	Co-sputtered amorphous Ge-Sb-Se thin films: optical properties and structure. , 2017, , .		1
142	Radio-frequency magnetron co-sputtered Ge-Sb-Te phase change thin films. Journal of Non-Crystalline Solids, 2021, 569, 121003.	3.1	1
143	Full-vector finite element 3D model for waveguide-based plasmonic sensors in the infrared. , 2018, , .		1
144	Radio-frequency sputtering fabrication of chalcogenide-based Er3+-doped vertical optical cavities for near-infrared operation. Optical Materials Express, 2020, 10, 2500.	3.0	1

#	Article	IF	CITATIONS
145	Tailoring of Multisource Deposition Conditions towards Required Chemical Composition of Thin Films. Nanomaterials, 2022, 12, 1830.	4.1	1
146	Kerr spatial solitons in chalcogenide waveguides. , 2009, , .		0
147	Infrared sensor for water pollution and monitoring. Proceedings of SPIE, 2017, , .	0.8	0
148	Infrared-Sensor Based on Selenide Waveguide Devoted to Water Pollution. , 2018, , .		0
149	Long-Wave IR Luminescence of Tb3+ and Sm3+ doped Ga5Ge20Sb10Se65 Fibers. , 2019, , .		0
150	Laser ablation of Ga‧bâ€Te thin films monitored with quadrupole ion trap timeâ€ofâ€flight mass spectrometry. Journal of the American Ceramic Society, 2021, 104, 6643.	3.8	0
151	Optical amplification of Pr3+-doped ZBLA channel waveguides for visible Laser emission. , 2012, , .		0
152	Optical amplification of Pr3+-doped ZBLA channel waveguides for visible Laser emission. , 2012, , .		0
153	Chalcogenide waveguide for sensing applications in the mid-infrared. , 2017, , .		0
154	Infrared sulfide fibers for all-optical gas detection. , 2018, , .		0
155	Development of integrated platform based on chalcogenides for sensing applications in the mid-infrared. , 2018, , .		0
156	Germaniumâ€antimonyâ€seleniumâ€tellurium thin films: Clusters formation by laser ablation and comparison with clusters from mixtures of elements. Journal of the American Ceramic Society, 0, , .	3.8	0