Yasuaki Tamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2448401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunomodulation of Melanoma by Chemo-Thermo-Immunotherapy Using Conjugates of Melanogenesis Substrate NPrCAP and Magnetite Nanoparticles: A Review. International Journal of Molecular Sciences, 2022, 23, 6457.	4.1	7
2	Heat shock protein 47 confers chemoresistance on pancreatic cancer cells by interacting with calreticulin and IRE11±. Cancer Science, 2021, 112, 2803-2820.	3.9	8
3	Targeting of Collagen-specific Chaperone Heat Shock Protein 47 for Cancer Therapy. Thermal Medicine, 2021, 37, 79-93.	0.1	0
4	HSP47 promotes metastasis of breast cancer by interacting with myosin IIA via the unfolded protein response transducer IRE11±. Oncogene, 2020, 39, 4519-4537.	5.9	17
5	Heat Shock Protein 47 Maintains Cancer Cell Growth by Inhibiting the Unfolded Protein Response Transducer IRE1α. Molecular Cancer Research, 2020, 18, 847-858.	3.4	7
6	ERO1α is a novel endogenous marker of hypoxia in human cancer cell lines. BMC Cancer, 2019, 19, 510.	2.6	12
7	Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains. Asian-Australasian Journal of Animal Sciences, 2018, 31, 1213-1220.	2.4	30
8	Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells. Scientific Reports, 2017, 7, 9389.	3.3	34
9	Endoplasmic reticulum oxidase 1α is critical for collagen secretion from and membrane type 1-matrix metalloproteinase levels in hepatic stellate cells. Journal of Biological Chemistry, 2017, 292, 15649-15660.	3.4	10
10	Cancer-associated oxidoreductase ERO1-α promotes immune escape through up-regulation of PD-L1 in human breast cancer. Oncotarget, 2017, 8, 24706-24718.	1.8	52
11	Spatiotemporal Regulation of Hsp90–Ligand Complex Leads to Immune Activation. Frontiers in Immunology, 2016, 7, 201.	4.8	12
12	Cancer-associated oxidoreductase ERO1-α drives the production of VEGF via oxidative protein folding and regulating the mRNA level. British Journal of Cancer, 2016, 114, 1227-1234.	6.4	40
13	Hypoxia augments MHC class I antigen presentation via facilitation of ERO1â€Î±â€mediated oxidative folding in murine tumor cells. European Journal of Immunology, 2016, 46, 2842-2851.	2.9	21
14	Microenvironmental stresses induce HLAâ€E/Qaâ€1 surface expression and thereby reduce CD8 ⁺ Tâ€cell recognition of stressed cells. European Journal of Immunology, 2016, 46, 929-940.	2.9	19
15	Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence. Experimental Cell Research, 2016, 341, 8-17.	2.6	34
16	Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480. PLoS ONE, 2016, 11, e0158903.	2.5	9
17	Heat shock protein 90 associates with Tollâ€like receptors 7/9 and mediates selfâ€nucleic acid recognition in SLE. European Journal of Immunology, 2015, 45, 2028-2041.	2.9	30
18	Cancer-Associated Oxidoreductase ERO1-α Drives the Production of Tumor-Promoting Myeloid-Derived Suppressor Cells via Oxidative Protein Folding. Journal of Immunology, 2015, 194, 2004-2010.	0.8	46

Yasuaki Tamura

#	Article	IF	CITATIONS
19	Cancer-Associated Oxidase ERO1-α Regulates the Expression of MHC Class I Molecule via Oxidative Folding. Journal of Immunology, 2015, 194, 4988-4996.	0.8	38
20	CpG-A stimulates Hsp72 secretion from plasmacytoid dendritic cells, facilitating cross-presentation. Immunology Letters, 2015, 167, 34-40.	2.5	3
21	Heat shock protein 90 targets a chaperoned peptide to the static early endosome for efficient crossâ€presentation by human dendritic cells. Cancer Science, 2015, 106, 18-24.	3.9	18
22	TLR4 and NLRP3 inflammasome activation in monocytes by N-propionyl cysteaminylphenol-maleimide-dextran (NPCMD). Journal of Dermatological Science, 2014, 73, 209-215.	1.9	5
23	Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication. Experimental Cell Research, 2013, 319, 2617-2626.	2.6	35
24	Immunotherapeutic benefit of αâ€interferon (IFNα) in survivin2 <scp>B</scp> â€derived peptide vaccination for advanced pancreatic cancer patients. Cancer Science, 2013, 104, 124-129.	3.9	66
25	Melanoma-Targeted Chemothermotherapy and <i>In Situ</i> Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles. Journal of Skin Cancer, 2013, 2013, 1-12.	1.2	13
26	Human endoplasmic reticulum oxidoreductin 1â€Î± is a novel predictor for poor prognosis of breast cancer. Cancer Science, 2013, 104, 1091-1096.	3.9	67
27	Mechanism of putative neo-antigen formation from N-propionyl-4-S-cysteaminylphenol, a tyrosinase substrate, in melanoma models. Biochemical Pharmacology, 2012, 84, 646-653.	4.4	15
28	N-propionyl-4-S-cysteaminylphenol induces apoptosis in B16F1 cells and mediates tumor-specific T-cell immune responses in a mouse melanoma model. Journal of Dermatological Science, 2012, 67, 51-60.	1.9	16
29	Establishment of a monoclonal antiâ€pan HLA class I antibody suitable for immunostaining of formalinâ€fixed tissue: Unusually high frequency of downâ€regulation in breast cancer tissues. Pathology International, 2012, 62, 303-308.	1.3	51
30	Immunogenic enhancement and clinical effect by typeâ€i interferon of antiâ€apoptotic protein, survivinâ€derived peptide vaccine, in advanced colorectal cancer patients. Cancer Science, 2011, 102, 1181-1187.	3.9	51
31	Extracellular heat shock protein 90 plays a role in translocating chaperoned antigen from endosome to proteasome for generating antigenic peptide to be cross-presented by dendritic cells. International Immunology, 2011, 23, 223-237.	4.0	65
32	Melanomaâ€ŧargeted chemoâ€ŧhermoâ€immuno (CTI)â€ŧherapy using <i>N</i> â€propionylâ€4â€ <i>S</i> â€cysteaminylphenolâ€magnetite nanoparticles elicits CTL response via heat shock proteinâ€peptide complex release. Cancer Science, 2010, 101, 1939-1946.	3.9	33
33	Spatiotemporal Regulation of Heat Shock Protein 90-Chaperoned Self-DNA and CpG-Oligodeoxynucleotide for Type I IFN Induction via Targeting to Static Early Endosome. Journal of Immunology, 2010, 184, 7092-7099.	0.8	37
34	Targeting to Static Endosome Is Required for Efficient Cross-Presentation of Endoplasmic Reticulum-Resident Oxygen-Regulated Protein 150-Peptide Complexes. Journal of Immunology, 2009, 183, 5861-5869.	0.8	23
35	Growth Inhibition of Re-Challenge B16 Melanoma Transplant by Conjugates of Melanogenesis Substrate and Magnetite Nanoparticles as the Basis for Developing Melanoma-Targeted Chemo-Thermo-Immunotherapy. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-13.	3.0	36
36	N-Propionyl-Cysteaminylphenol-Magnetite Conjugate (NPrCAP/M) Is a Nanoparticle for the Targeted Growth Suppression of Melanoma Cells. Journal of Investigative Dermatology, 2009, 129, 2233-2241.	0.7	39

Yasuaki Tamura

#	Article	IF	CITATIONS
37	Efficient Cross-Presentation by Heat Shock Protein 90-Peptide Complex-Loaded Dendritic Cells via an Endosomal Pathway. Journal of Immunology, 2007, 179, 1803-1813.	0.8	100
38	A Potent Immunogenic General Cancer Vaccine That Targets Survivin, an Inhibitor of Apoptosis Proteins. Clinical Cancer Research, 2005, 11, 1474-1482.	7.0	117
39	Immunotherapy using heat-shock protein preparations of leukemia cells after syngeneic bone marrow transplantation in mice. Blood, 2001, 98, 1852-1857.	1.4	61
40	A Novel Negative Regulator Molecule, Choâ€1, Is Involved in the Cytotoxicity by Human Natural Killer Cells but Not in Cytotoxic T Lymphocytes. Microbiology and Immunology, 1999, 43, 285-291.	1.4	1
41	Immunotherapy of Tumors with Autologous Tumor-Derived Heat Shock Protein Preparations. Science, 1997, 278, 117-120.	12.6	646