List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2448358/publications.pdf Version: 2024-02-01

		8181	21540
267	17,294	76	114
papers	citations	h-index	g-index
272 all docs	272 docs citations	272 times ranked	11874 citing authors

#	Article	IF	CITATIONS
1	Peptideâ€ <i>N</i> ⁴ â€(<i>N</i> â€acetylâ€Î²â€glucosaminyl)asparagine amidase F cannot release a with fucose attached α1 → 3 to the asparagineâ€linked <i>N</i> â€acetylglucosamine residue. FEBS Journal, 1991, 199, 647-652.	glycans 0.2	367
2	The Role of Protein Glycosylation in Allergy. International Archives of Allergy and Immunology, 2007, 142, 99-115.	2.1	349
3	Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal, 1999, 16, 109-123.	2.7	300
4	Analysis of immunoglobulin glycosylation by LCâ€ESIâ€MS of glycopeptides and oligosaccharides. Proteomics, 2008, 8, 2858-2871.	2.2	294
5	Generation of Arabidopsis thaliana plants with complex N -glycans lacking β1,2-linked xylose and core α1,3-linked fucose. FEBS Letters, 2004, 561, 132-136.	2.8	281
6	Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core Â1,3-linked fucose and xylose substitutions. Glycobiology, 2001, 11, 261-274.	2.5	231
7	Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnology Journal, 2004, 2, 517-523.	8.3	221
8	Primary structures of the Nâ€linked carbohydrate chains from honeybee venom phospholipase A ₂ . FEBS Journal, 1993, 213, 1193-1204.	0.2	212
9	Core Â1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology, 1998, 8, 651-661.	2.5	205
10	Regulatory approval and a firstâ€inâ€human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnology Journal, 2015, 13, 1106-1120.	8.3	205
11	Insect Cells Contain an Unusual, Membrane-bound β-N-Acetylglucosaminidase Probably Involved in the Processing of Protein N-Glycans. Journal of Biological Chemistry, 1995, 270, 17344-17349.	3.4	200
12	Fucose α1,3-Linked to the Core Region of Glycoprotein N-Glycans Creates an Important Epitope for IgE from Honeybee Venom Allergic Individuals. International Archives of Allergy and Immunology, 1993, 102, 259-266.	2.1	198
13	Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase. Microbial Cell Factories, 2015, 14, 1.	4.0	198
14	Fucose in N-glycans: from plant to man. Biochimica Et Biophysica Acta - General Subjects, 1999, 1473, 216-236.	2.4	197
15	Mass + Retention Time = Structure:Â A Strategy for the Analysis ofN-Glycans by Carbon LC-ESI-MS and Its Application to FibrinN-Glycans. Analytical Chemistry, 2007, 79, 5051-5057.	6.5	193
16	In Planta Protein Sialylation through Overexpression of the Respective Mammalian Pathway. Journal of Biological Chemistry, 2010, 285, 15923-15930.	3.4	193
17	Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microbial Cell Factories, 2009, 8, 29.	4.0	189
18	Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain, 2009, 132, 465-481.	7.6	176

#	Article	IF	CITATIONS
19	Class I α-Mannosidases Are Required for N-Glycan Processing and Root Development in <i>Arabidopsis thaliana</i> Â Â Â. Plant Cell, 2010, 21, 3850-3867.	6.6	172
20	The Effect of Temperature on the Proteome of Recombinant <i>Pichia pastoris</i> . Journal of Proteome Research, 2009, 8, 1380-1392.	3.7	170
21	Determination of site-specific glycan heterogeneity on glycoproteins. Nature Protocols, 2012, 7, 1285-1298.	12.0	170
22	Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIVâ€1 and contains predominantly singleâ€GlcNAc <i>N</i> â€glycans. Plant Biotechnology Journal, 2008, 6, 189-201.	8.3	166
23	Processing of asparagine-linked oligosaccharides in insect cells. N-Acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology, 1993, 3, 619-625.	2.5	164
24	A Unique β1,3-Galactosyltransferase Is Indispensable for the Biosynthesis of <i>N</i> -Glycans Containing Lewis a Structures in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2278-2292.	6.6	157
25	Improved Virus Neutralization by Plant-produced Anti-HIV Antibodies with a Homogeneous β1,4-Galactosylated N-Glycan Profile. Journal of Biological Chemistry, 2009, 284, 20479-20485.	3.4	156
26	N-Glycan Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Electrophoretically Separated Nonmammalian Proteins: Application to Peanut Allergen Ara h 1 and Olive Pollen Allergen Ole e 1. Analytical Biochemistry, 2000, 285, 64-75.	2.4	154
27	Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3727-3732.	7.1	154
28	Carrot allergy: Double-blinded, placebo-controlled food challenge and identification of allergens. Journal of Allergy and Clinical Immunology, 2001, 108, 301-307.	2.9	153
29	Antibody binding to venom carbohydrates is a frequent cause for double positivity to honeybee and yellow jacket venom in patients with stinging-insect allergy. Journal of Allergy and Clinical Immunology, 2001, 108, 1045-1052.	2.9	152
30	Comprehensive glyco-proteomic analysis of human α1-antitrypsin and its charge isoforms. Proteomics, 2006, 6, 3369-3380.	2.2	149
31	Identification of Core α1,3-Fucosylated Glycans and Cloning of the Requisite Fucosyltransferase cDNA from Drosophila melanogaster. Journal of Biological Chemistry, 2001, 276, 28058-28067.	3.4	147
32	The Drosophila fused lobes Gene Encodes an N-Acetylglucosaminidase Involved in N-Glycan Processing. Journal of Biological Chemistry, 2006, 281, 4867-4875.	3.4	142
33	Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Analytical Biochemistry, 2009, 384, 263-273.	2.4	139
34	Structures of the N-Linked Oligosaccharides of the Membrane Glycoproteins from Three Lepidopteran Cell Lines (Sf-21, IZD-Mb-0503, Bm-N). Archives of Biochemistry and Biophysics, 1994, 308, 148-157.	3.0	137
35	Glycan analysis by modern instrumental methods. Proteomics, 2011, 11, 631-643.	2.2	137
36	Nitroimidazole Action in Entamoeba histolytica: A Central Role for Thioredoxin Reductase. PLoS Biology, 2007, 5, e211.	5.6	135

#	Article	IF	CITATIONS
37	Influence of Electrosorption, Solvent, Temperature, and Ion Polarity on the Performance of LC-ESI-MS Using Graphitic Carbon for Acidic Oligosaccharides. Analytical Chemistry, 2008, 80, 7534-7542.	6.5	132
38	The Surface-Associated Exopolysaccharide of Bifidobacterium longum 35624 Plays an Essential Role in Dampening Host Proinflammatory Responses and Repressing Local T _H 17 Responses. Applied and Environmental Microbiology, 2016, 82, 7185-7196.	3.1	126
39	<i>Trichomonas vaginalis</i> : metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Molecular Microbiology, 2009, 72, 518-536.	2.5	125
40	Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensinâ€like and a hydroxyprolineâ€rich domain. FASEB Journal, 2003, 17, 106-108.	0.5	121
41	N-Glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology, 2011, 21, 813-823.	2.5	120
42	Systems-level organization of yeast methylotrophic lifestyle. BMC Biology, 2015, 13, 80.	3.8	118
43	Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon. Analytical Chemistry, 2010, 82, 9782-9788.	6.5	117
44	Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1430-1435.	7.1	116
45	High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella ?-fuc-t ?-xyl-t mutant. Plant Biotechnology Journal, 2007, 5, 389-401.	8.3	113
46	Localisation and distribution of the major allergens in apple fruits. Plant Science, 2005, 169, 387-394.	3.6	111
47	Schistosome Nâ€glycans containing core α3â€fucose and core β2â€xylose epitopes are strong inducers of Th2 responses in mice. European Journal of Immunology, 2003, 33, 1271-1281.	2.9	110
48	Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology, 2004, 14, 457-466.	2.5	109
49	Involvement of Carbohydrate Epitopes in the IgE Response of Celery–Allergic Patients. International Archives of Allergy and Immunology, 1999, 120, 30-42.	2.1	107
50	Two Novel Types of O-Glycans on the Mugwort Pollen Allergen Art v 1 and Their Role in Antibody Binding. Journal of Biological Chemistry, 2005, 280, 7932-7940.	3.4	106
51	A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology, 2007, 18, 235-241.	2.5	105
52	Molecular cloning and functional expression of \hat{l}^2 1,2-xylosyltransferase cDNA from Arabidopsis thaliana 1. FEBS Letters, 2000, 472, 105-108.	2.8	104
53	Hazelnut (<i>Corylus avellana</i>) vicilin Cor a 11: molecular characterization of a glycoprotein and its allergenic activity. Biochemical Journal, 2004, 383, 327-334.	3.7	104
54	Enzymatic Properties and Subcellular Localization of Arabidopsis β-N-Acetylhexosaminidases. Plant Physiology, 2007, 145, 5-16.	4.8	104

#	Article	IF	CITATIONS
55	Molecular characterization and allergenic activity of Lyc e 2 (βâ€fructofuranosidase), a glycosylated allergen of tomato. FEBS Journal, 2003, 270, 1327-1337.	0.2	103
56	Purification, cDNA Cloning, and Expression of GDP-l-Fuc:Asn-linked GlcNAc α1,3-Fucosyltransferase from Mung Beans. Journal of Biological Chemistry, 1999, 274, 21830-21839.	3.4	102
57	Unexpected Deposition Patterns of Recombinant Proteins in Post-Endoplasmic Reticulum Compartments of Wheat Endosperm. Plant Physiology, 2004, 136, 3457-3466.	4.8	101
58	Genetic model organisms in the study of N-glycans. Biochimie, 2001, 83, 703-712.	2.6	100
59	Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. Journal of Allergy and Clinical Immunology, 2008, 121, 185-190.e2.	2.9	97
60	Determination of amino sugars and amino acids in glycoconjugates using precolumn derivatization with o-phthalaldehyde. Analytical Biochemistry, 1992, 204, 215-219.	2.4	91
61	Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry. Chemical Communications, 2016, 52, 4381-4384.	4.1	91
62	Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Biochemical Journal, 2005, 387, 385-391.	3.7	89
63	A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics, 2009, 9, 4143-4153.	2.2	89
64	Kinetic comparison of peptide: N-glycosidases F and A reveals several differences in substrate specificity. Glycoconjugate Journal, 1995, 12, 84-93.	2.7	88
65	In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnology Journal, 2007, 2, 700-708.	3.5	88
66	Controlled glycosylation of plant-produced recombinant proteins. Current Opinion in Biotechnology, 2014, 30, 95-100.	6.6	88
67	Engineering of complex protein sialylation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9498-9503.	7.1	88
68	NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30.	3.8	87
69	Structural analysis of N-glycans from allergenic grass, ragweed and tree pollens: core alpha1,3-linked fucose and xylose present in all pollens examined. Glycoconjugate Journal, 1998, 15, 1055-1070.	2.7	86
70	Reassessing the role of hyaluronidase in yellow jacket venom allergy. Journal of Allergy and Clinical Immunology, 2010, 125, 184-190.e1.	2.9	86
71	The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconjugate Journal, 1995, 12, 77-83.	2.7	84
72	Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta, 2006, 224, 222-227.	3.2	84

5

#	Article	IF	CITATIONS
73	The Nâ€glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in <i>Vespulaâ€∫vulgaris</i> . FEBS Journal, 2005, 272, 5182-5190.	4.7	82
74	Characterization and Scope of S-layer Protein O-Glycosylation in Tannerella forsythia. Journal of Biological Chemistry, 2011, 286, 38714-38724.	3.4	82
75	Molecular cloning and characterization of cDNA coding for Â1,2N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum. Glycobiology, 1999, 9, 779-785.	2.5	81
76	Inhibition of <scp>I</scp> g <scp>E</scp> binding to crossâ€reactive carbohydrate determinants enhances diagnostic selectivity. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1269-1277.	5.7	79
77	Dissecting individual steps of nitrogen transcription factor cooperation in the <i>Aspergillus nidulans</i> nitrate cluster. Molecular Microbiology, 2008, 69, 1385-1398.	2.5	78
78	Cloning and expression of cDNAs encoding α1,3-fucosyltransferase homologues from Arabidopsis thaliana1The cDNA sequences referred to in this publication have been deposited with the EMBL database under the numbers AJ404860 (FucTA), AJ404861 (FucTB) and AJ404862 (FucTC).1. Biochimica Et Biophysica Acta - General Subjects, 2001, 1527, 88-96.	2.4	77
79	The Intracellular Fate of a Recombinant Protein Is Tissue Dependent. Plant Physiology, 2006, 141, 578-586.	4.8	77
80	A New Allergen from Ragweed (Ambrosia artemisiifolia) with Homology to Art v 1 from Mugwort. Journal of Biological Chemistry, 2010, 285, 27192-27200.	3.4	77
81	Engineering of Sialylated Mucin-type O-Glycosylation in Plants. Journal of Biological Chemistry, 2012, 287, 36518-36526.	3.4	77
82	Expression and glycoengineering of functionally active heteromultimeric IgM in plants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6263-6268.	7.1	77
83	RhamnogalacturonanÂ <scp>II</scp> structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant Journal, 2013, 76, 61-72.	5.7	76
84	Genome Analysis and Characterisation of the Exopolysaccharide Produced by Bifidobacterium longum subsp. longum 35624â,,¢. PLoS ONE, 2016, 11, e0162983.	2.5	76
85	Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo Journal International, 2016, 25, 98-105.	2.0	76
86	Construction of a Functional CMP-Sialic Acid Biosynthesis Pathway in Arabidopsis. Plant Physiology, 2008, 147, 331-339.	4.8	74
87	The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics, 2010, 11, 207.	2.8	74
88	Optimal nitrogen supply as a key to increased and sustained production of a monoclonal fullâ€size antibody in BYâ€2 suspension culture. Biotechnology and Bioengineering, 2010, 107, 278-289.	3.3	74
89	Mossâ€based production of asialoâ€erythropoietin devoid of Lewis A and other plantâ€ŧypical carbohydrate determinants. Plant Biotechnology Journal, 2012, 10, 851-861	8.3	74
90	Carbohydrateâ€dependent, HLA class IIâ€restricted, human T cell response to the bee venom allergen phospholipase A2 in allergic patients. European Journal of Immunology, 1995, 25, 538-542.	2.9	73

#	Article	IF	CITATIONS
91	Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics, 2008, 8, 254-263.	2.2	73
92	β-N-Acetylhexosaminidases HEXO1 and HEXO3 Are Responsible for the Formation of Paucimannosidic N-Glycans in Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 10793-10802.	3.4	69
93	Biochemical, molecular characterization, and glycoproteomic analyses of ?1-proteinase inhibitor products used for replacement therapy. Transfusion, 2006, 46, 1959-1977.	1.6	66
94	Inconsistent Results of Diagnostic Tools Hamper the Differentiation between Bee and Vespid Venom Allergy. PLoS ONE, 2011, 6, e20842.	2.5	66
95	Ceneration of Biologically Active Multi-Sialylated Recombinant Human EPOFc in Plants. PLoS ONE, 2013, 8, e54836.	2.5	66
96	?1?6(?1?3)-Difucosylation of the asparagine-boundN-acetylglucosamine in honeybee venom phospholipase A2. Glycoconjugate Journal, 1992, 9, 82-85.	2.7	65
97	Transient Glyco-Engineering to Produce Recombinant IgA1 with Defined N- and O-Glycans in Plants. Frontiers in Plant Science, 2016, 7, 18.	3.6	63
98	Characterization of mucin-type core-1 beta1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS Journal, 2005, 272, 4295-4305.	4.7	62
99	Protein tyrosine O-glycosylationA rather unexplored prokaryotic glycosylation system. Glycobiology, 2010, 20, 787-798.	2.5	62
100	Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris. Scientific Reports, 2013, 3, 3279.	3.3	62
101	Glycan profiles of the 27 N-glycosylation sites of the HIV envelope protein CN54gp140. Biological Chemistry, 2012, 393, 719-730.	2.5	61
102	Rapid High Yield Production of Different Glycoforms of Ebola Virus Monoclonal Antibody. PLoS ONE, 2011, 6, e26040.	2.5	61
103	<i>Arabidopsis</i> Class I α-Mannosidases MNS4 and MNS5 Are Involved in Endoplasmic Reticulum–Associated Degradation of Misfolded Glycoproteins. Plant Cell, 2014, 26, 1712-1728.	6.6	60
104	Analytical and Functional Aspects of Antibody Sialylation. Journal of Clinical Immunology, 2010, 30, 15-19.	3.8	59
105	A Capillary Electrophoretic Study on the Specificity of Î ² -Galactosidases fromAspergillus oryzae, Escherichia coli, Streptococcus pneumoniae,andCanavalia ensiformis(Jack Bean). Analytical Biochemistry, 1997, 246, 96-101.	2.4	58
106	Characterisation of peptideâ€ <i>N</i> ⁴ â€(<i>N</i> â€acetylâ€Î²â€glucosaminyl)asparagine amidase and its Nâ€glycans. FEBS Journal, 1998, 252, 118-123.	e A 0.2	58
107	Expression and Characterization of an Iron-Regulated Hemin-Binding Protein, HbpA, from Leptospira interrogans Serovar Lai. Infection and Immunity, 2007, 75, 4582-4591.	2.2	58
108	Arabidopsis thaliana alpha1,2â€glucosyltransferase (ALG10) is required for efficient Nâ€glycosylation and leaf growth. Plant Journal, 2011, 68, 314-325.	5.7	58

#	Article	IF	CITATIONS
109	Rice endosperm produces an underglycosylated and potent form of the <scp>HIV</scp> â€neutralizing monoclonal antibody 2G12. Plant Biotechnology Journal, 2016, 14, 97-108.	8.3	58
110	Arabidopsis thaliana β1,2-xylosyltransferase: an unusual glycosyltransferase with the potential to act at multiple stages of the plant N-glycosylation pathway. Biochemical Journal, 2005, 388, 515-525.	3.7	57
111	Site-specific analysis of the O-glycosylation of bovine fetuin by electron-transfer dissociation mass spectrometry. Journal of Proteomics, 2014, 108, 258-268.	2.4	57
112	Chapter 10 Protein Glycosylation in Insects. New Comprehensive Biochemistry, 1995, 29, 543-563.	0.1	56
113	Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology, 2012, 22, 389-399.	2.5	56
114	Allergens in raw and roasted hazelnuts (Corylus avellana) and their cross-reactivity to pollen. European Food Research and Technology, 2000, 212, 2-12.	3.3	55
115	Plants as bioreactors: A comparative study suggests that Medicago truncatula is a promising production system. Journal of Biotechnology, 2005, 120, 121-134.	3.8	55
116	Proteolytic and <i>N</i> -Glycan Processing of Human <i>α</i> 1-Antitrypsin Expressed in <i>Nicotiana benthamiana</i> Â Â Â Â. Plant Physiology, 2014, 166, 1839-1851.	4.8	55
117	An oligosaccharyltransferase from <i>Leishmania major</i> increases the Nâ€glycan occupancy on recombinant glycoproteins produced in <i>Nicotiana benthamiana</i> . Plant Biotechnology Journal, 2018, 16, 1700-1709.	8.3	54
118	Processing of asparagine-linked oligosaccharides in insect cells: evidence for ?-mannosidase II. Glycoconjugate Journal, 1995, 12, 150-155.	2.7	52
119	Immunoglobulin G specifically binding plant N-glycans with high affinity could be generated in rabbits but not in mice. Glycobiology, 2006, 16, 349-357.	2.5	52
120	ImmunoCAP cellulose displays cross-reactive carbohydrate determinant (CCD) epitopes and can cause false-positive test results in patients with high anti-CCD IgE antibody levels. Journal of Allergy and Clinical Immunology, 2018, 141, 372-381.e3.	2.9	52
121	Molecular cloning of cDNA encoding N-acetylglucosaminyltransferase II from Arabidopsis thaliana. Glycoconjugate Journal, 1999, 16, 787-791.	2.7	50
122	Tomato (Lycopersicon esculentum) allergens in pollen-allergic patients. European Food Research and Technology, 2001, 213, 259-266.	3.3	50
123	The Drosophila melanogaster brainiac Protein Is a Glycolipid-specific β1,3N-Acetylglucosaminyltransferase. Journal of Biological Chemistry, 2002, 277, 32417-32420.	3.4	50
124	A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Scientific Reports, 2013, 3, 3019.	3.3	50
125	Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation. MAbs, 2015, 7, 863-870.	5.2	50
126	Monoclonal antibody therapy for Junin virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4458-4463.	7.1	50

#	Article	IF	CITATIONS
127	GDP-fucose: beta-N-acetylglucosamine (Fuc to (Fucalpha1 6GlcNAc)-Asn-peptide) alpha1 3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands. The difucosylation of asparagine-bound N-acetylglucosamine. FEBS Journal, 1991, 199, 745-751.	0.2	49
128	Analysis of recombinant human follicle-stimulating hormone (FSH) by mass spectrometric approaches. Analytical and Bioanalytical Chemistry, 2011, 400, 2427-2438.	3.7	48
129	Production, characterization, and antigen specificity of recombinant 62â€71â€3, a candidate monoclonal antibody for rabies prophylaxis in humans. FASEB Journal, 2013, 27, 2055-2065.	0.5	48
130	Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs, 2014, 6, 1585-1597.	5.2	47
131	Functional purification and characterization of a GDP-fucose: ?-N-acetylglucosamine (Fuc to Asn) Tj ETQq1 1 0.78	4314 rgB1 2.7	Overlock 46
132	Nâ€Glycosylation in the Moss <i>Physcomitrella patens</i> is Organized Similarly to that in Higher Plants. Plant Biology, 2003, 5, 582-591.	3.8	46
133	Expression of functionally active sialylated human erythropoietin in plants. Biotechnology Journal, 2013, 8, 371-382.	3.5	46
134	Reduced paucimannosidic <i>N</i> â€glycan formation by suppression of a specific βâ€hexosaminidase from <i>Nicotiana benthamiana</i> . Plant Biotechnology Journal, 2017, 15, 197-206.	8.3	46
135	Phenotype-related differential α-2,6- or α-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthritis and Cartilage, 2010, 18, 240-248.	1.3	45
136	Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth. Journal of Biotechnology, 2012, 157, 295-303.	3.8	45
137	Characterizing the Link between Glycosylation State and Enzymatic Activity of the Endo-β1,4-glucanase KORRIGAN1 from Arabidopsis thaliana. Journal of Biological Chemistry, 2013, 288, 22270-22280.	3.4	45
138	Outer membrane vesicles of <i>Tannerella forsythia</i> : biogenesis, composition, and virulence. Molecular Oral Microbiology, 2015, 30, 451-473.	2.7	45
139	A genetic and structural analysis of the -glycosylation capabilities. Plant Molecular Biology, 2004, 55, 631-644.	3.9	44
140	Glycan modulation and sulfoengineering of anti–HIV-1 monoclonal antibody PG9 in plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12675-12680.	7.1	44
141	Isomer-Specific Analysis of Released N-Glycans by LC-ESI MS/MS with Porous Graphitized Carbon. Methods in Molecular Biology, 2015, 1321, 427-435.	0.9	43
142	Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie, 2003, 85, 413-422.	2.6	42
143	The structure of the fructan sinistrin from Urginea maritima. Carbohydrate Research, 1992, 235, 221-230.	2.3	41
144	IL-1β and TNF-α alter the glycophenotype of primary human chondrocytes in vitro. Carbohydrate Research, 2010, 345, 1389-1393.	2.3	41

#	Article	IF	CITATIONS
145	Transgenic Production of an Anti HIV Antibody in the Barley Endosperm. PLoS ONE, 2015, 10, e0140476.	2.5	41
146	Exploring Site-Specific N-Glycosylation of HEK293 and Plant-Produced Human IgA Isotypes. Journal of Proteome Research, 2017, 16, 2560-2570.	3.7	41
147	IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. European Journal of Immunology, 2017, 47, 2070-2079.	2.9	41
148	The Changing Fate of a Secretory Glycoprotein in Developing Maize Endosperm Â. Plant Physiology, 2010, 153, 693-702.	4.8	40
149	Determination of true ratios of different N-glycan structures in electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 2519-2530.	3.7	40
150	Expression of human butyrylcholinesterase with an engineered glycosylation profile resembling the plasmaâ€derived orthologue. Biotechnology Journal, 2014, 9, 501-510.	3.5	39
151	Carbohydrate moieties can induce mediator release: a detailed characterization of two major timothy grass pollen allergens. Biological Chemistry, 2004, 385, 397-407.	2.5	38
152	Glycophenotyping of osteoarthritic cartilage and chondrocytes by RT-qPCR, mass spectrometry, histochemistry with plant/human lectins and lectin localization with a glycoprotein. Arthritis Research and Therapy, 2013, 15, R147.	3.5	38
153	Influence of Elastin-Like Polypeptide and Hydrophobin on Recombinant Hemagglutinin Accumulations in Transgenic Tobacco Plants. PLoS ONE, 2014, 9, e99347.	2.5	38
154	Molecular cloning and characterization of a plant $\hat{l}\pm 1,3/4$ -fucosidase based on sequence tags from almond fucosidase I. Phytochemistry, 2006, 67, 641-648.	2.9	37
155	Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Molecular Biology, 2013, 83, 105-117.	3.9	37
156	Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination. Acta Neuropathologica, 2016, 131, 281-298.	7.7	37
157	Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient <i>Pichia pastoris</i> . Biotechnology Journal, 2017, 12, 1600584.	3.5	37
158	N-glycans of the microalga Chlorella vulgaris are of the oligomannosidic type but highly methylated. Scientific Reports, 2019, 9, 331.	3.3	37
159	Identification of an Arabidopsis gene encoding a GH95 alpha1,2-fucosidase active on xyloglucan oligo- and polysaccharides. Phytochemistry, 2008, 69, 1983-1988.	2.9	36
160	Generation of hypoallergenic neoglycoconjugates for dendritic cell targeted vaccination: A novel tool for specific immunotherapy. Journal of Controlled Release, 2013, 165, 101-109.	9.9	36
161	Exopolysaccharide from Bifidobacterium longum subsp. longum 35624â,,¢ modulates murine allergic airway responses. Beneficial Microbes, 2018, 9, 761-773.	2.4	35
162	The lipidome and proteome of microsomes from the methylotrophic yeast Pichia pastoris. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 215-226.	2.4	34

#	Article	IF	CITATIONS
163	IgE antibodies specific for carbohydrates in a patient allergic to gum Arabic (Acacia Senegal). Allergy: European Journal of Allergy and Clinical Immunology, 1998, 53, 1043-1051.	5.7	33
164	A proteomic study of the major allergens from yellow jacket venoms. Proteomics, 2007, 7, 1615-1623.	2.2	33
165	Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation. Applied Microbiology and Biotechnology, 2012, 93, 2503-2512.	3.6	33
166	Discovery and Structural Characterization of Fucosylated Oligomannosidic N-Clycans in Mushrooms. Journal of Biological Chemistry, 2011, 286, 5977-5984.	3.4	32
167	Characterization of plants expressing the human β1,4-galactosyltrasferase gene. Plant Physiology and Biochemistry, 2015, 92, 39-47.	5.8	32
168	Detailed functional characterization of glycosylated and nonglycosylated variants of malaria vaccine candidate <i>Pf</i> <scp>AMA</scp> 1 produced in <i>Nicotiana benthamiana</i> and analysis of growth inhibitory responses in rabbits. Plant Biotechnology Journal, 2015, 13, 222-234.	8.3	32
169	Purification and characterization of a hydroperoxidase from the cyanobacteriumSynechocystisPCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiology Letters, 1999, 170, 1-12.	1.8	31
170	Structural analysis of the glycoprotein allergen Hev b 4 from natural rubber latex by mass spectrometry. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 715-720.	2.4	31
171	Biochemical, molecular and preclinical characterization of a doubleâ€virusâ€reduced human butyrylcholinesterase preparation designed for clinical use. Vox Sanguinis, 2011, 100, 285-297.	1.5	30
172	Structural characterization of the N-linked oligosaccharides from tomato fruit. Phytochemistry, 1999, 51, 199-210.	2.9	29
173	"Cross-glycosylation―of proteins in Bacteroidales species. Glycobiology, 2013, 23, 568-577.	2.5	29
174	Distinct Fcα receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies. Journal of Biological Chemistry, 2019, 294, 13995-14008.	3.4	29
175	More than silk and honeyor, can insect cells serve in the production of therapeutic glycoproteins?. Glycoconjugate Journal, 1997, 14, 643-646.	2.7	28
176	Identification and Characterization of a Major Cell Wall-Associated Iron-Regulated Envelope Protein (Irep-28) in Mycobacterium tuberculosis. Vaccine Journal, 2006, 13, 1137-1142.	3.1	28
177	Adaptation of the "inâ€gel release method―to <i>N</i> â€glycome analysis of lowâ€milligram amounts of material. Electrophoresis, 2007, 28, 4484-4492.	2.4	28
178	Production of a recombinant peroxidase in different glyco-engineered Pichia pastoris strains: a morphological and physiological comparison. Microbial Cell Factories, 2018, 17, 183.	4.0	27
179	Engineering the interactions between a plantâ€produced <scp>HIV</scp> antibody and human Fc receptors. Plant Biotechnology Journal, 2020, 18, 402-414.	8.3	26
180	Structures of the N-linked carbohydrate of ascorbic acid oxidase from zucchini. , 1998, 15, 79-82.		25

11

#	Article	IF	CITATIONS
181	Protein O-glucosylation in Lactobacillus buchneri. Glycoconjugate Journal, 2014, 31, 117-131.	2.7	25
182	A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nature Communications, 2019, 10, 3701.	12.8	25
183	Cytokine-Like 1 Is a Novel Proangiogenic Factor Secreted by and Mediating Functions of Endothelial Progenitor Cells. Circulation Research, 2019, 124, 243-255.	4.5	25
184	N-Glycosylation in Insects Revisited Trends in Glycoscience and Glycotechnology, 1996, 8, 101-114.	0.1	24
185	A context-independent <i>N</i> -glycan signal targets the misfolded extracellular domain of <i>Arabidopsis</i> STRUBBELIG to endoplasmic-reticulum-associated degradation. Biochemical Journal, 2014, 464, 401-411.	3.7	23
186	Isotypeâ€specific glycosylation analysis of mouse IgG by LCâ€MS. Proteomics, 2016, 16, 1321-1330.	2.2	23
187	A General Protein O-Glycosylation Gene Cluster Encodes the Species-Specific Glycan of the Oral Pathogen Tannerella forsythia: O-Glycan Biosynthesis and Immunological Implications. Frontiers in Microbiology, 2018, 9, 2008.	3.5	23
188	Unaltered complex N-glycan profiles in Nicotiana benthamiana despite drastic reduction of Â1,2-N-acetylglucosaminyltransferase I activity. Glycoconjugate Journal, 2004, 21, 275-282.	2.7	22
189	The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels. Plant Molecular Biology, 2011, 77, 275-284.	3.9	22
190	Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. Phytochemistry, 2012, 84, 24-30.	2.9	22
191	The transmembrane domain of <i>N</i> –acetylglucosaminyltransferaseÂl is the key determinant for its Golgi subcompartmentation. Plant Journal, 2014, 80, 809-822.	5.7	22
192	Isolation and Characterization of a Thionin Proprotein-processing Enzyme from Barley. Journal of Biological Chemistry, 2015, 290, 18056-18067.	3.4	22
193	A pseudaminic acid or a legionaminic acid derivative transferase is strain-specifically implicated in the general protein O-glycosylation system of the periodontal pathogen Tannerella forsythia. Glycobiology, 2017, 27, 555-567.	2.5	22
194	Glyco-variant library of the versatile enzyme horseradish peroxidase. Glycobiology, 2014, 24, 852-863.	2.5	21
195	<i>Tannerella forsythia</i> strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications. Glycobiology, 2017, 27, 342-357.	2.5	21
196	Characterization of recombinant human diamine oxidase (rhDAO) produced in Chinese Hamster Ovary (CHO) cells. Journal of Biotechnology, 2016, 227, 120-130.	3.8	21
197	Stable Protein Sialylation in Physcomitrella. Frontiers in Plant Science, 2020, 11, 610032.	3.6	21
198	Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta, 2008, 227, 649-658.	3.2	20

#	Article	IF	CITATIONS
199	Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology (United Kingdom), 2015, 161, 1356-1368.	1.8	20
200	Characterization of the isoforms of phospholipase A2 from honeybee venom. Insect Biochemistry, 1991, 21, 467-472.	1.8	19
201	Silencing ?1,2-xylosyltransferase in Transgenic Tomato Fruits Reveals xylose as Constitutive Component of Ige-Binding Epitopes. Frontiers in Plant Science, 2011, 2, 42.	3.6	19
202	The S-Layer Protein of the Anammox Bacterium Kuenenia stuttgartiensis Is Heavily O-Glycosylated. Frontiers in Microbiology, 2016, 7, 1721.	3.5	19
203	Detailed characterization of the O-linked glycosylation of the neuropilin-1 c/MAM-domain. Glycoconjugate Journal, 2016, 33, 387-397.	2.7	19
204	In Planta Glycan Engineering and Functional Activities of IgE Antibodies. Frontiers in Bioengineering and Biotechnology, 2019, 7, 242.	4.1	19
205	A first view on the unsuspected intragenus diversity of Nâ€glycans in <i>Chlorella</i> microalgae. Plant Journal, 2020, 103, 184-196.	5.7	19
206	The N-glycans of Chlorella sorokiniana and a related strain contain arabinose but have strikingly different structures. Glycobiology, 2020, 30, 663-676.	2.5	19
207	A bacteriophage-associated glycanase cleaving β-pyranosidic linkages of 3-deoxy-D-manno-2-octulosonic acid (KDO). Biochemical and Biophysical Research Communications, 1986, 136, 329-335.	2.1	18
208	Molecular cloning and heterologous expression of \hat{l}^2 1,2-xylosyltransferase and core $\hat{l}\pm$ 1,3-fucosyltransferase from maize. Phytochemistry, 2006, 67, 2215-2224.	2.9	18
209	Bisecting Lewis X in Hybrid-Type <i>N</i> -Glycans of Human Brain Revealed by Deep Structural Glycomics. Analytical Chemistry, 2021, 93, 15175-15182.	6.5	17
210	Concanavalin A binding and endoglycosidase D resistance of beta1,2-xylosylated and alpha1,3-fucosylated plant and insect oligosaccharides. , 1998, 15, 203-206.		16
211	HPLC method for the determination of Fuc to Asn-linked GlcNAc fucosyltransferases. Glycoconjugate Journal, 1998, 15, 89-91.	2.7	16
212	O-Glycosylation of snails. Glycoconjugate Journal, 2012, 29, 189-198.	2.7	16
213	Recombinant plant-derived human IgE glycoproteomics. Journal of Proteomics, 2017, 161, 81-87.	2.4	16
214	Glycan profile of CHO derived IgM purified by highly efficient single step affinity chromatography. Analytical Biochemistry, 2017, 539, 162-166.	2.4	16
215	Efficient N-Glycosylation of the Heavy Chain Tailpiece Promotes the Formation of Plant-Produced Dimeric IgA. Frontiers in Chemistry, 2020, 8, 346.	3.6	16
216	A subcellular proteome atlas of the yeast <i>Komagataella phaffii</i> . FEMS Yeast Research, 2020, 20, .	2.3	16

#	Article	IF	CITATIONS
217	Reduced quenching and extraction time for mammalian cells using filtration and syringe extraction. Journal of Biotechnology, 2014, 182-183, 97-103.	3.8	15
218	The secretome of <i>Pichia pastoris</i> in fedâ€batch cultivations is largely independent of the carbon source but changes quantitatively over cultivation time. Microbial Biotechnology, 2020, 13, 479-494.	4.2	15
219	Glycosylphosphatidylinositol-Anchor Synthesis in Plants: A Glycobiology Perspective. Frontiers in Plant Science, 2020, 11, 611188.	3.6	15
220	Beyond alcohol oxidase: the methylotrophic yeast <i>Komagataella phaffii</i> utilizes methanol also with its native alcohol dehydrogenase Adh2. FEMS Yeast Research, 2021, 21, .	2.3	14
221	Lewis A Glycans Are Present on Proteins Involved in Cell Wall Biosynthesis and Appear Evolutionarily Conserved Among Natural Arabidopsis thaliana Accessions. Frontiers in Plant Science, 2021, 12, 630891.	3.6	14
222	Investigation of a monoclonal antibody against enterotoxigenic <i>Escherichia coli</i> , expressed as secretory IgA1 and IgA2 in plants. Gut Microbes, 2021, 13, 1-14.	9.8	14
223	Two additional bacteriophage-associated glycan hydrolases cleaving ketosidic bonds of 3-deoxy-D-manno-octulosonic acid in capsular polysaccharides ofEscherichia coli. FEBS Letters, 1987, 221, 145-149.	2.8	13
224	The α-d-mannan core of a complex cell-wall heteroglycan ofTrichoderma reesei is responsible for β-glucosidase activation. Archives of Microbiology, 1995, 164, 414-419.	2.2	13
225	Tissues of the clawed frog Xenopus laevis contain two closely related forms of UDP-GlcNAc:Â3-D-mannoside Â-1,2-N-acetylglucosaminyltransferase I. Glycobiology, 2001, 11, 769-778.	2.5	13
226	The Alg5 ortholog Wollknäel is essential for correct epidermal differentiation during Drosophila late embryogenesis. Glycobiology, 2011, 21, 743-756.	2.5	13
227	Processing of the Terminal Alpha-1,2-Linked Mannose Residues From Oligomannosidic N-Glycans Is Critical for Proper Root Growth. Frontiers in Plant Science, 2018, 9, 1807.	3.6	13
228	The Golgi Localization of GnTI Requires a Polar Amino Acid Residue within Its Transmembrane Domain. Plant Physiology, 2019, 180, 859-873.	4.8	13
229	Characteristics of the asparagine-linked oligosaccharide from honey-bee venom phospholipase A2. Evidence for the presence of terminal and fucose in an insect glycoprotein. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 83, 321-324.	0.2	12
230	"Hypermethylation―of anthranilic acid-labeled sugars confers the selectivity required for liquid chromatography-mass spectrometry. Analytical Biochemistry, 2016, 514, 24-31.	2.4	12
231	Impact of temperature and pH on recombinant human IgM quality attributes and productivity. New Biotechnology, 2019, 50, 20-26.	4.4	12
232	Glycosylation of the capsid proteins of cowpea mosaic virus: a reinvestigation shows the absence of sugar residues. Journal of General Virology, 2000, 81, 1111-1114.	2.9	12
233	Bacteriophage-associated glycan hydrolases specific for Escherichia coli capsular serotype K12. FEBS Journal, 1990, 189, 307-312.	0.2	11
234	Combining Protein and Strain Engineering for the Production of Glyco-Engineered Horseradish Peroxidase C1A in Pichia pastoris. International Journal of Molecular Sciences, 2015, 16, 23127-23142.	4.1	11

#	Article	IF	CITATIONS
235	Towards Mapping of the Human Brain N-Glycome with Standardized Graphitic Carbon Chromatography. Biomolecules, 2022, 12, 85.	4.0	11
236	Prolyl Hydroxylase Paralogs in Nicotiana benthamiana Show High Similarity With Regard to Substrate Specificity. Frontiers in Plant Science, 2021, 12, 636597.	3.6	10
237	Inhibition of cross-reactive carbohydrate determinants (CCDs) enhances the selectivity of in vitro allergy diagnosis. Allergologie Select, 2017, 1, 141-149.	3.1	10
238	Flagellin glycosylation in <i>Paenibacillus alvei</i> CCM 2051 ^T . Glycobiology, 2016, 26, cwv087.	2.5	9
239	Site-Specific Glycosylation Profiling Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS). Methods in Molecular Biology, 2015, 1321, 407-415.	0.9	9
240	Oligomannosidic glycans at Asn-110 are essential for secretion of human diamine oxidase. Journal of Biological Chemistry, 2018, 293, 1070-1087.	3.4	9
241	The Degree and Length of <i>O</i> â€Glycosylation of Recombinant Proteins Produced in <i>Pichia pastoris</i> Depends on the Nature of the Protein and the Process Type. Biotechnology Journal, 2021, 16, e2000266.	3.5	9
242	Plant glycosidases acting on protein-linked oligosaccharides. Phytochemistry, 2009, 70, 318-324.	2.9	8
243	Self-processing of a barley subtilase expressed in E. coli. Protein Expression and Purification, 2014, 101, 76-83.	1.3	8
244	Peptidoglycan-type analysis of the N-acetylmuramic acid auxotrophic oral pathogen Tannerella forsythia and reclassification of the peptidoglycan-type of Porphyromonas gingivalis. BMC Microbiology, 2019, 19, 200.	3.3	8
245	Nâ€Glycan profiling of chondrocytes and fibroblastâ€like synoviocytes: Towards functional glycomics in osteoarthritis. Proteomics - Clinical Applications, 2021, 15, e2000057.	1.6	8
246	Impact of Specific N-Glycan Modifications on the Use of Plant-Produced SARS-CoV-2 Antigens in Serological Assays. Frontiers in Plant Science, 2021, 12, 747500.	3.6	8
247	O-methylated N-glycans Distinguish Mosses from Vascular Plants. Biomolecules, 2022, 12, 136.	4.0	8
248	Basophil activation test is better but not good enough for the diagnosis of hymenoptera venom allergy: the problem of crossâ€reactive carbohydrate determinants. Clinical and Experimental Allergy, 2010, 40, 1290-1292.	2.9	7
249	Characterisation of a highly potent and near pan-neutralising anti-HIV monoclonal antibody expressed in tobacco plants. Retrovirology, 2021, 18, 17.	2.0	7
250	UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase from the snail Biomphalaria glabrata – substrate specificity and preference of glycosylation sites. Glycoconjugate Journal, 2014, 31, 661-670.	2.7	6
251	Inhibition kreuzreaktiver Kohlenhydratdeterminanten (CCDs) erhöht die Treffsicherheit der In-vitro-Allergiediagnostik. Allergologie, 2014, 37, 46-54.	0.1	6
252	Reductive Alkaline Release of Nâ€Glycans Generates a Variety of Unexpected, Useful Products. Proteomics, 2018, 18, 1700330.	2.2	5

#	Article	IF	CITATIONS
253	Utilization of different MurNAcÂsources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG. BMC Microbiology, 2020, 20, 352.	3.3	5
254	A Combination of Structural, Genetic, Phenotypic and Enzymatic Analyses Reveals the Importance of a Predicted Fucosyltransferase to Protein O-Glycosylation in the Bacteroidetes. Biomolecules, 2021, 11, 1795.	4.0	5
255	Seed-produced anti-globulin VHH-Fc antibodies retrieve globulin precursors in the insoluble fraction and modulate the Arabidopsis thaliana seed subcellular morphology. Plant Molecular Biology, 2020, 103, 597-608.	3.9	4
256	Glycosylation of Recombinant Proteins in Plan. , 0, , 345-374.		4
257	Oxygen-Dependent Changes in the N-Glycome of Murine Pulmonary Endothelial Cells. Antioxidants, 2021, 10, 1947.	5.1	4
258	Insect cells as hosts for the expression of recombinant glycoproteins. , 1999, , 29-43.		3
259	The Structural Difference of Isobaric N-Glycans of Two Microalgae Samples Reveals Taxonomic Distance. Frontiers in Plant Science, 2021, 12, 643249.	3.6	3
260	Thorsmoerkia curvula gen. et spec. nov. (Trebouxiophyceae, Chlorophyta), a semi-terrestrial microalga from Iceland exhibits high levels of unsaturated fatty acids. Journal of Applied Phycology, 2021, 33, 3671-3682.	2.8	3
261	Immunocap Cellulose Displays Cross-Reactive Carbohydrate Epitopes and Can Cause False-Positive Test Results in Patients with Anti-CCD IgE Antibodies. Journal of Allergy and Clinical Immunology, 2014, 133, AB398.	2.9	2
262	Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo Journal, 2016, 25, 18-25.	0.1	2
263	Purification and characterization of a hydroperoxidase from the cyanobacterium Synechocystis PCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiology Letters, 1999, 170, 1-12.	1.8	2
264	LC-MS Analysis of (Glyco-)Proteins of Pichia pastoris. Methods in Molecular Biology, 2019, 1923, 351-360.	0.9	1
265	Corrigendum to "Molecular cloning and characterization of a plant α1,3/4-fucosidase based on sequence tags from almond fucosidase l―[Phytochemistry 67 (2006) 641–648]. Phytochemistry, 2006, 67, 1399.	2.9	0
266	CHO-recombinant human growth hormone as a protease sensitive reporter protein. Applied Microbiology and Biotechnology, 2009, 84, 693-699.	3.6	0
267	Letter to the Editor regarding "Analysis of recombinant human follicle-stimulating hormone by mass spectrometric approaches― Analytical and Bioanalytical Chemistry, 2017, 409, 3899-3900.	3.7	0