Yan-Chao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2447847/publications.pdf

Version: 2024-02-01

109	2,369	27	42
papers	citations	h-index	g-index
111	111	111	1798
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A concise synthesis of marine natural product (\hat{a}^2) -15-oxopuupehenol from $(+)$ -sclarelide. Natural Product Research, 2023, 37, 1265-1270.	1.8	2
2	Concise synthesis of marine natural products smenodiol and (â^')-pelorol. Natural Product Research, 2023, 37, 1505-1510.	1.8	2
3	Recent Progress on Processing Technologies, Chemical Components, and Bioactivities of Chinese Red Ginseng, American Red Ginseng, and Korean Red Ginseng. Food and Bioprocess Technology, 2022, 15, 47-71.	4.7	5
4	Corrosion resistance and antibacterial activity of procyanidin B2 as a novel environment-friendly inhibitor for Q235 steel in 1ÂM HCl solution. Bioelectrochemistry, 2022, 143, 107969.	4.6	26
5	Foxtail millet prolamin as an effective encapsulant deliver curcumin by fabricating caseinate stabilized composite nanoparticles. Food Chemistry, 2022, 367, 130764.	8.2	29
6	Inhibition effect of sparteine isomers with different stereochemical conformations on the corrosion of mild steel in hydrochloric acid solution. Journal of Molecular Liquids, 2022, 345, 117833.	4.9	9
7	A specifically triggered turn-on fluorescent probe platform and its visual imaging of HClO in cells, arthritis and tumors. Journal of Hazardous Materials, 2022, 427, 127874.	12.4	14
8	Fabricating of grape seed proanthocyanidins loaded Zein-NaCas composite nanoparticles to exert effective inhibition of Q235 steel corrosion in seawater. Journal of Molecular Liquids, 2022, 348, 118467.	4.9	5
9	A water-soluble turn-on fluorescent probe for rapid discrimination and imaging of Cys/Hcy and GSH in cells and zebrafish through different fluorescent channels. Dyes and Pigments, 2022, 199, 110058.	3.7	12
10	Co-assembly of foxtail millet prolamin-lecithin/alginate sodium in citric acid–potassium phosphate buffer for delivery of quercetin. Food Chemistry, 2022, 381, 132268.	8.2	7
11	Highly effective Q235 steel corrosion inhibition in $1 {\rm \hat{A}M}$ HCl solution by novel green strictosamide from Uncaria laevigata: Experimental and theoretical approaches. Journal of Environmental Chemical Engineering, 2022, 10, 107581.	6.7	8
12	Immunological effect of fucosylated chondroitin sulfate and its oligomers from Holothuria fuscogilva on RAW 264.7 cells. Carbohydrate Polymers, 2022, 287, 119362.	10.2	7
13	Chondroitin sulfate deposited on foxtail millet prolamin/caseinate nanoparticles to improve physicochemical properties and enhance cancer therapeutic effects. Food and Function, 2022, 13, 5343-5352.	4.6	11
14	Investigation of 3â€(phenylsulfinyl)indoles selfâ€assembled monolayer for the inhibition of iron corrosion in acidic media. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 1490-1504.	1.5	2
15	Lentinan as an eco-friendly corrosion inhibitor for Q235 steel in acid medium: Experimental and theoretical studies. Journal of Molecular Liquids, 2022, 360, 119513.	4.9	14
16	Single/co-encapsulation capacity and physicochemical stability of zein and foxtail millet prolamin nanoparticles. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112685.	5.0	11
17	Structure and hypoglycemic effect of a neutral polysaccharide isolated from sea cucumber Stichopus japonicus. International Journal of Biological Macromolecules, 2022, 216, 14-23.	7.5	20
18	Stevioside–Zn2+ system as an eco-friendly corrosion inhibitor for C1020 carbon steel in hydrochloric acid solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126010.	4.7	25

#	Article	IF	Citations
19	Switchable and efficient conversion of 2-amido-aryl oxazolines to quinazolin-4(3H)-ones and N-(2-chloroethyl)benzamides. Organic Chemistry Frontiers, 2021, 8, 584-590.	4.5	4
20	Apostichopus japonicus polysaccharide as efficient sustainable inhibitor for mild steel against hydrochloric acid corrosion. Journal of Molecular Liquids, 2021, 321, 114923.	4.9	23
21	Simple Turn-On Fluorescent Sensor for Discriminating Cys/Hcy and GSH from Different Fluorescent Signals. Analytical Chemistry, 2021, 93, 2244-2253.	6.5	59
22	Direct C2-arylation of $\langle i \rangle N \langle i \rangle$ -acyl pyrroles with aryl halides under palladium catalysis. Organic and Biomolecular Chemistry, 2021, 19, 1555-1564.	2.8	3
23	Direct conversion of sulfinamides to thiosulfonates without the use of additional redox agents under metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 9291-9298.	2.8	7
24	Intermolecular Amination of Ketoximes with Anthranils by Rhâ€Catalyzed Câ^H Bond Activation in Air. Asian Journal of Organic Chemistry, 2021, 10, 838-844.	2.7	2
25	Application of marine natural products in drug research. Bioorganic and Medicinal Chemistry, 2021, 35, 116058.	3.0	63
26	Inhibition of mild steel corrosion in $1\mathrm{M}$ HCl by chondroitin sulfate and its synergistic effect with sodium alginate. Carbohydrate Polymers, 2021, 260, 117842.	10.2	45
27	Structural elucidation and antidiabetic activity of fucosylated chondroitin sulfate from sea cucumber Stichopus japonicas. Carbohydrate Polymers, 2021, 262, 117969.	10.2	18
28	Anticorrosion performance of grape seed proanthocyanidins extract and Tween-80 for mild steel in hydrochloric acid medium. Journal of Molecular Liquids, 2021, 331, 115799.	4.9	15
29	Chemically modified resveratrol as green corrosion inhibitor for Q235 steel: Electrochemical, SEM, UV and DFT studies. Journal of Molecular Liquids, 2021, 343, 117672.	4.9	38
30	Mitigation effect of quinazolin-4(3H)-one derivatives on the corrosion behaviour of mild steel in HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127188.	4.7	10
31	Experimental and theoretical investigation of inhibition behavior of bisflavanol for Q235 steel in hydrochloric acid solution. Journal of Molecular Liquids, 2021, 342, 117490.	4.9	8
32	Rational design of an HClO-specific triggered self-immolative fluorescent turn-on sensor and its bioimaging applications. Journal of Materials Chemistry B, 2021, 9, 8793-8800.	5.8	3
33	Adlay seed hull polysaccharide as a green corrosion inhibitor for mild steel in acid solution: surface analyses and theoretical calculations. New Journal of Chemistry, 2021, 45, 21188-21198.	2.8	6
34	A modular strategy for the synthesis of marine originated meroterpenoid-type natural products. Organic and Biomolecular Chemistry, 2021, 19, 9439-9447.	2.8	2
35	AMPK inhibitor BML-275 induces neuroprotection through decreasing cyt c and AIF expression after transient brain ischemia. Bioorganic and Medicinal Chemistry, 2021, 52, 116522.	3.0	4
36	Chlorination of Arylaldehyde-Derived Arylsulfonylhydrazones with N-Chlorosuccinimide Leading to 1,2,4,5-Tetrazine Derivatives. Synthesis, 2020, 52, 69-74.	2.3	2

#	Article	IF	Citations
37	Synergistic inhibition effect of <i>N</i> â€(furanâ€2â€ylmethyl)â€7 <i>H</i> â€purinâ€6â€amine and iodide ion for steel corrosion in 1 mol/L HCl. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 498-507.	mild 1.5	6
38	Direct oxidative coupling of <i>N</i> -acyl pyrroles with alkenes by ruthenium(<scp>ii</scp>)-catalyzed regioselective C2-alkenylation. Organic and Biomolecular Chemistry, 2020, 18, 500-513.	2.8	10
39	TMSOTf-Promoted Sulfinylation of Electron-Rich Aromatics with Sodium Arylsulfinates. Synlett, 2020, 31, 349-354.	1.8	8
40	Sulfoxideâ€Promoted Chlorination of Indoles and Electronâ€Rich Arenes with Chlorine as Nucleophile. Advanced Synthesis and Catalysis, 2020, 362, 1039-1045.	4.3	11
41	Anticorrosion performance of acriflavine–Zn2+ system for mild steel in seawater utilization. Journal of Molecular Liquids, 2020, 299, 112152.	4.9	21
42	A novel mitochondrial targeting fluorescent probe for ratiometric imaging SO2 derivatives in living cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112339.	3.9	11
43	Base-Promoted Direct Synthesis of Sulfinates from N-SulfonylÂhydrazones under Metal-Free Conditions. Synthesis, 2020, 52, 755-762.	2.3	5
44	Tin(ii)-catalyzed dehydrative cross-coupling of 2H-chromene hemiacetals with ketones. Organic and Biomolecular Chemistry, 2020, 18, 9308-9315.	2.8	7
45	Ruthenium(II)â€catalyzed Monohydroalkylation of α,βâ€Unsaturated Ketones with N â€Acyl Pyrroles using a Câ^'H Activation Strategy. Asian Journal of Organic Chemistry, 2020, 9, 1602-1609.	2.7	O
46	Preparation of methylacridinium iodides self-assembled monolayers and its anti-corrosion properties for mild steel in seawater: Experimental and computational studies. Journal of Molecular Liquids, 2020, 313, 113545.	4.9	5
47	Aloe polysaccharide as an eco-friendly corrosion inhibitor for mild steel in simulated acidic oilfield water: Experimental and theoretical approaches. Journal of Molecular Liquids, 2020, 307, 112950.	4.9	49
48	Release of antidiabetic peptides from Stichopus japonicas by simulated gastrointestinal digestion. Food Chemistry, 2020, 315, 126273.	8.2	35
49	Impact Assessment of heavy metal cations to the characteristics of photosynthetic phycocyanin. Journal of Hazardous Materials, 2020, 391, 122225.	12.4	20
50	A novel mitochondrial-targeted two-photon fluorescent probe for ultrafast monitoring of SO2 derivatives and its applications. Talanta, 2020, 217, 121086.	5.5	24
51	Performance and mechanism of a composite scaling–corrosion inhibitor used in seawater: 10-Methylacridinium iodide and sodium citrate. Desalination, 2020, 486, 114482.	8.2	45
52	Synthesis of 2â€Trifluoromethyl Quinolines from α,βâ€Unsaturated Trifluoromethyl Ketones: Regiochemistry Reversal Comparing to the Standard Skraupâ€Doebnerâ€Von Miller Synthesis. ChemistrySelect, 2020, 5, 4099-4103.	1.5	O
53	Fructan from Polygonatum cyrtonema Hua as an eco-friendly corrosion inhibitor for mild steel in HCl media. Carbohydrate Polymers, 2020, 238, 116216.	10.2	54
54	9-Substituted acridines as effective corrosion inhibitors for mild steel: electrochemical, surface morphology, and computational studies. New Journal of Chemistry, 2020, 44, 6464-6474.	2.8	29

#	Article	IF	CITATIONS
55	Structure-based discovery of novel 4-(2-fluorophenoxy)quinoline derivatives as c-Met inhibitors using isocyanide-involved multicomponent reactions. European Journal of Medicinal Chemistry, 2020, 193, 112241.	5.5	21
56	Design, synthesis and biological evaluation of novel N-sulfonylamidine-based derivatives as c-Met inhibitors via Cu-catalyzed three-component reaction. European Journal of Medicinal Chemistry, 2020, 200, 112470.	5 . 5	12
57	Regioselective synthesis of gentisyl alcohol-type marine natural products. Natural Product Research, 2019, 33, 1891-1896.	1.8	0
58	Tetrahydroacridines as corrosion inhibitor for X80 steel corrosion in simulated acidic oilfield water. Journal of Molecular Liquids, 2019, 293, 111478.	4.9	57
59	Synergistic effect of 1-(2,5-dioxoimidazolidin-4-yl)urea and Tween-80 towards the corrosion mitigation of mild steel in HCl. New Journal of Chemistry, 2019, 43, 13899-13910.	2.8	8
60	Synthesis of N-Sulfonyl- and N-Acylpyrroles via a Ring-Closing Metathesis/Dehydrogenation Tandem Reaction. Synthesis, 2019, 51, 3651-3666.	2.3	6
61	Switchable regioselection of C–H thiolation of indoles using different TMS counterions. Chemical Communications, 2019, 55, 11864-11867.	4.1	23
62	Highly effective inhibition of mild steel corrosion in HCl solution by using pyrido[1,2- <i>a</i>]benzimidazoles. New Journal of Chemistry, 2019, 43, 413-426.	2.8	65
63	Synergistic Inhibition Effect of 9-(4-Chlorophenyl)-1,2,3,4-tetrahydroacridines and Tween-80 for Mild Steel Corrosion in Acid Medium. Journal of Physical Chemistry C, 2019, 123, 14480-14489.	3.1	29
64	Regioselective and oxidant-free sulfinylation of indoles and pyrroles with sulfinamides. Organic and Biomolecular Chemistry, 2019, 17, 4789-4800.	2.8	7
65	Synthesis of Bisflavanol-Type Natural Products and Their AnaloguesÂ-via Self-Coupling of C8-Methylol Catechin Derivatives. Synthesis, 2019, 51, 3127-3141.	2.3	1
66	Design, synthesis and evaluation of sulfonylurea-containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 2801-2812.	3.0	14
67	Sodium Arenesulfinatesâ€Involved Sulfinate Synthesis Revisited: Improved Synthesis and Revised Reaction Mechanism. European Journal of Organic Chemistry, 2019, 2019, 1846-1855.	2.4	13
68	Approaches to the Total Synthesis of Puupehenone-Type Marine Natural Products., 2019,,.		0
69	Anti-Corrosive Properties of Alkaloids on Metals. , 2019, , .		1
70	Synthesis of natural product inulavosin via Ga(OTf) ₃ -Catalyzed Hetero Diels–Alder Dimerization of salicyl alcohol derivative. Natural Product Research, 2019, 33, 2911-2916.	1.8	3
71	A six-step synthetic approach to marine natural product (+)-aureol. Tetrahedron Letters, 2018, 59, 945-948.	1.4	9
72	Asymmetric total synthesis of talienbisflavan A. Organic and Biomolecular Chemistry, 2018, 16, 585-592.	2.8	7

#	Article	IF	Citations
73	Efficient Synthesis of Functionalized 4H-Chromenes via an Fe(OTf)3-Catalyzed Cyclization Reaction of Phenols and Ketones. Synthesis, 2018, 50, 1482-1492.	2.3	2
74	Divergent Synthesis of Bioactive Marine Meroterpenoids by Palladiumâ€Catalyzed Tandem Carbene Migratory Insertion. European Journal of Organic Chemistry, 2018, 2018, 915-925.	2.4	23
75	Halogen-Substituted Acridines as Highly Effective Corrosion Inhibitors for Mild Steel in Acid Medium. Journal of Physical Chemistry C, 2018, 122, 25349-25364.	3.1	50
76	Synthesis of 2â€(2 <i>H</i> àê€Chromenyl)â€Oxazoles from 2 <i>H</i> àê€Chromene Hemiacetals by Using a Modified Passeriniâ€Type Reaction. ChemistrySelect, 2018, 3, 9658-9662.	1.5	6
77	Adsorption and corrosion inhibition properties of pyridineâ€2â€aldehydeâ€2â€quinolylhydrazone for Q235 steel in acid medium: Electrochemical, thermodynamic, and surface studies. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1638-1648.	1.5	44
78	Divergent Synthesis of Marine Natural Products Siphonodictyal B, Corallidictyals C/D, and Liphagal Based on the Early Presence of an Aldehyde Group Instead of a Late-Stage Introduction. Journal of Organic Chemistry, 2018, 83, 8716-8723.	3.2	15
79	Gravimetric, electrochemical and surface studies on the anticorrosive properties of 1-(2-pyridyl)-2-thiourea and 2-(imidazol-2-yl)-pyridine for mild steel in hydrochloric acid. New Journal of Chemistry, 2018, 42, 12649-12665.	2.8	98
80	Protecting-group-free synthesis of haterumadienone- and puupehenone-type marine natural products. Green Chemistry, 2017, 19, 2140-2144.	9.0	20
81	Palladiumâ€Catalyzed Regioselective Oxidative Annulation of Cyclohexanones and 2â€Aminophenyl Ketones Using Molecular Oxygen as the Sole Oxidant. Advanced Synthesis and Catalysis, 2017, 359, 4250-4257.	4.3	21
82	Enantiospecific Semisynthesis of Puupehedione-Type Marine Natural Products. Journal of Organic Chemistry, 2017, 82, 12914-12919.	3.2	23
83	Regioselective 1,2-Diol Rearrangement by Controlling the Loading of BF ₃ ·Et ₂ O and Its Application to the Synthesis of Related Nor-Sesquiterene- and Sesquiterene-Type Marine Natural Products. Organic Letters, 2017, 19, 3811-3814.	4.6	33
84	Direct Sulfination of Nonactivated Alcohols with Arylsulfonylmethyl Isocyanides. European Journal of Organic Chemistry, 2016, 2016, 4077-4083.	2.4	11
85	Synthesis of Quinolines via Iron-Catalyzed Redox Condensation of Alcohols with 2-Nitrobenzyl Methyl Ether/2-Nitrobenzyl Alcohols. Synthesis, 2016, 48, 3985-3995.	2.3	17
86	Ruthenium(II) atalyzed Hydrogen Transfer/Annulation Cascade Processes between Alcohols and 2â€Nitrobenzaldehydes. Advanced Synthesis and Catalysis, 2015, 357, 583-588.	4.3	30
87	Catalyst-Free Synthesis of Spiropyrazolines from Chalcones and Cyclic Ketone N-Tosylhydrazones. Synlett, 2015, 26, 243-249.	1.8	8
88	Rearrangement of Dypnones to 1,3,5-Triarylbenzenes. Organic Letters, 2015, 17, 1473-1476.	4.6	36
89	Bismuth(III) Bromideâ€Catalysed Substitution of Benzyl Alcohols with Arylsulfonylmethyl Isocyanides: An Unexpected Access to Sulfinates. Advanced Synthesis and Catalysis, 2015, 357, 1393-1397.	4.3	28
90	Water-promoted ortho-selective monohydroxymethylation of phenols in the NaBO2 system. Organic and Biomolecular Chemistry, 2014, 12, 3100-3107.	2.8	18

#	Article	IF	CITATIONS
91	Bi(OTf)3-catalyzed tandem reaction of naphthols with \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}^4 -ketoesters. Efficient synthesis of functionalized 4H-chromenes. Chinese Chemical Letters, 2014, 25, 1235-1239.	9.0	12
92	Regioselective Electrophilic Aromatic Bromination: Theoretical Analysis and Experimental Verification. Molecules, 2014, 19, 3401-3416.	3.8	19
93	Cascade reaction of \hat{l}^2 , \hat{l}^3 -unsaturated $\hat{l}\pm$ -ketoesters with phenols in trityl chloride/TFA system. Highly selective synthesis of 4-aryl-2H-chromenes and their applications. Organic and Biomolecular Chemistry, 2011, 9, 2868.	2.8	20
94	Hafnium Triflate as an Efficient Catalyst for Direct Friedel–Crafts Reactions of Chromene Hemiacetals. Advanced Synthesis and Catalysis, 2011, 353, 907-912.	4.3	35
95	Facile Synthesis of Spiropyrans from Chromene Hemiacetal Esters and Bifunctional Nucleophiles. Synlett, 2011, 2011, 1573-1578.	1.8	12
96	A sensitive and highly selective fluorescent sensor for In3+. Organic and Biomolecular Chemistry, 2010, 8, 3394.	2.8	38
97	Asymmetric Total Syntheses of (â^')-Renieramycin M and G and (â^')-Jorumycin Using Aziridine as a Lynchpin. Organic Letters, 2009, 11, 5558-5561.	4.6	92
98	Synthetic Studies on (â^')-Lemonomycin: An Efficient Asymmetric Synthesis of Lemonomycinone Amide. Journal of Organic Chemistry, 2009, 74, 2046-2052.	3.2	37
99	Efficient Construction of Pyrazolo[1,5-a]pyrimidine Scaffold and its Exploration as a New Heterocyclic Fluorescent Platform. Journal of Fluorescence, 2008, 18, 357-363.	2.5	26
100	Hafnium Trifluoromethanesulfonate (Hafnium Triflate) as a Highly Efficient Catalyst for Chemoselective Thioacetalization and Transthioacetalization of Carbonyl Compounds. Journal of Organic Chemistry, 2008, 73, 9522-9524.	3.2	62
101	Asymmetric Total Synthesis of (\hat{a}^{-1}) -Quinocarcin. Journal of the American Chemical Society, 2008, 130, 7148-7152.	13.7	76
102	TFA-Mediated Tandem Friedelâ^'Crafts Alkylation/Cyclization/Hydrogen Transfer Process for the Synthesis of Flavylium Compounds. Journal of Organic Chemistry, 2007, 72, 9383-9386.	3.2	49
103	Skraupâ^'Doebnerâ^'Von Miller Quinoline Synthesis Revisited: Reversal of the Regiochemistry for γ-Aryl-β,γ-unsaturated α-Ketoesters. Journal of Organic Chemistry, 2006, 71, 6592-6595.	3.2	133
104	Synthesis of trifluoromethyl-promoted functional pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-d][1,2,3,5]tetrazine-4(3H)-ones. Journal of Fluorine Chemistry, 2006, 127, 409-416.	1.7	27
105	Efficient synthesis of 3â€arylaminopyrrolineâ€2â€ones by the tandem reaction of anilines and β,γâ€unsaturated αâ€ketoesters. Journal of Heterocyclic Chemistry, 2006, 43, 949-955.	2.6	28
106	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. Advanced Synthesis and Catalysis, 2005, 347, 1247-1256.	4.3	63
107	Design and synthesis of novel sulfone-containing pyrazolo[1,5-a]-pyrimidines and pyrazolo[5,1-d][1,2,3,5]tetrazine-4(3H)-ones. Journal of Heterocyclic Chemistry, 2005, 42, 609-613.	2.6	19
108	Synthesis of difluorinated 3-oxo-N,3-diarylpropanamides from 4-arylamino coumarins mediated by Selectfluor. Organic Chemistry Frontiers, 0, , .	4.5	1

ARTICLE IF CITATIONS

Comparison of Health-Relevant Polyphenolic Component Content and Bioavailability of Bilberry (Vaccinium Myrtillus L.), Blueberry (Vaccinium Sect. Cyanococcus Rydb.) and Chokeberry (Aronia) Tj ETQq1 1 0.784844 rgBT Overloc