Nicholas B Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2447590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infectious Diseases, The, 2020, 20, 1034-1042.	4.6	493
2	Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87, 25-52.	1.1	315
3	Global budget of CO, 1988–1997: Source estimates and validation with a global model. Journal of Geophysical Research, 2007, 112, .	3.3	297
4	Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa, 2018, 6, .	1.1	240
5	Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane. Journal of Geophysical Research, 1998, 103, 28197-28217.	3.3	225
6	Satellite evidence for a large source of formic acid from boreal and tropical forests. Nature Geoscience, 2012, 5, 26-30.	5.4	171
7	Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2009, 9, 287-343.	1.9	134
8	Geophysical validation of MIPAS-ENVISAT operational ozone data. Atmospheric Chemistry and Physics, 2007, 7, 4807-4867.	1.9	130
9	Past changes in the vertical distribution of ozone – Part 3: Analysis and interpretation of trends. Atmospheric Chemistry and Physics, 2015, 15, 9965-9982.	1.9	115
10	Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 2014, 515, 104-107.	13.7	110
11	CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations. Atmospheric Chemistry and Physics, 2008, 8, 2569-2594.	1.9	107
12	Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH ₄ , CO ₂ and N ₂ O. Atmospheric Chemistry and Physics, 2006, 6, 1953-1976.	1.9	103
13	Reorganisation of primary care for older adults during COVID-19: a cross-sectional database study in the UK. British Journal of General Practice, 2020, 70, e540-e547.	0.7	103
14	Enhanced Upper Tropical Tropospheric COS: Impact on the Stratospheric Aerosol Layer. Science, 2003, 300, 307-310.	6.0	98
15	Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle. Journal of Geophysical Research, 2008, 113, .	3.3	96
16	Spectroscopic measurements of tropospheric CO, C2H6, C2H2, and HCN in northern Japan. Journal of Geophysical Research, 2002, 107, ACH 2-1.	3.3	95
17	An update on ozone profile trends for the period 2000 to 2016. Atmospheric Chemistry and Physics, 2017, 17, 10675-10690.	1.9	93
18	Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl ₃ F and CCl ₂ using space-, balloon- and ground-based instrument observations. Atmospheric Chemistry and Physics, 2008, 8, 6199-6221	1.9	91

#	Article	IF	CITATIONS
19	Impact of Pinatubo aerosols on the partitioning between NO2and HNO3. Geophysical Research Letters, 1994, 21, 597-600.	1.5	88
20	Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. Journal of Geophysical Research, 2003, 108, .	3.3	86
21	Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere. Atmospheric Chemistry and Physics, 2008, 8, 2421-2435.	1.9	85
22	Validation of ACE-FTS N ₂ O measurements. Atmospheric Chemistry and Physics, 2008, 8, 4759-4786.	1.9	76
23	Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmospheric Chemistry and Physics, 2015, 15, 2915-2933.	1.9	76
24	Infrared solar spectroscopic measurements of free tropospheric CO, C2H6, and HCN above Mauna Loa, Hawaii: Seasonal variations and evidence for enhanced emissions from the Southeast Asian tropical fires of 1997-1998. Journal of Geophysical Research, 1999, 104, 18667-18680.	3.3	75
25	Validation of HNO⁢sub>3⁢/sub>, ClONO ₂ , and N ₂ 0 ₅ from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). Atmospheric Chemistry	1.9	75
26	And Physics, 2008, 8, 3529-3562. Measurements of trace gas emissions from Australian forest fires and correlations with coincident measurements of aerosol optical depth. Journal of Geophysical Research, 2005, 110, .	3.3	72
27	Observed and simulated time evolution of HCl, ClONO ₂ , and HF total column abundances. Atmospheric Chemistry and Physics, 2012, 12, 3527-3556.	1.9	72
28	Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature, 2021, 593, 233-237.	13.7	71
29	Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA. Atmospheric Measurement Techniques, 2012, 5, 3007-3027.	1.2	69
30	Carriage of group B streptococcus in pregnant women from Oxford, UK. Journal of Clinical Pathology, 2006, 59, 363-366.	1.0	68
31	TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmospheric Measurement Techniques, 2020, 13, 3751-3767.	1.2	66
32	Validation of MIPAS ClONO ₂ measurements. Atmospheric Chemistry and Physics, 2007, 7, 257-281.	1.9	65
33	Validation of NO ₂ and NO from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2008, 8, 5801-5841.	1.9	64
34	Comparisons between ground-based FTIR and MIPAS N ₂ O and HNO ₃ profiles before and after assimilation in BASCOE. Atmospheric Chemistry and Physics, 2007, 7, 377-396.	1.9	59
35	Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 2021, 14, 6249-6304.	1.2	57
36	Latitudinal variations of trace gas concentrations in the free troposphere measured by solar absorption spectroscopy during a ship cruise. Journal of Geophysical Research, 2000, 105, 1337-1349.	3.3	56

#	Article	IF	CITATIONS
37	An evaluation of IASI-NH ₃ with ground-based Fourier transform infrared spectroscopy measurements. Atmospheric Chemistry and Physics, 2016, 16, 10351-10368.	1.9	56
38	Ground-Based Solar Absorption FTIR Spectroscopy: Characterization of Retrievals and First Results from a Novel Optical Design Instrument at a New NDACC Complementary Station. Journal of Atmospheric and Oceanic Technology, 2007, 24, 432-448.	0.5	55
39	Validation of the CrIS fast physical NH ₃ retrieval with ground-based FTIR. Atmospheric Measurement Techniques, 2017, 10, 2645-2667.	1.2	52
40	Trace gas emissions from savanna fires in northern Australia. Journal of Geophysical Research, 2010, 115, .	3.3	51
41	Excess mortality in the first COVID pandemic peak: cross-sectional analyses of the impact of age, sex, ethnicity, household size, and long-term conditions in people of known SARS-CoV-2 status in England. British Journal of General Practice, 2020, 70, e890-e898.	0.7	51
42	COVIDâ€19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. Geophysical Research Letters, 2021, 48, e2020GL091987.	1.5	51
43	Validation of version-4.61 methane and nitrous oxide observed by MIPAS. Atmospheric Chemistry and Physics, 2009, 9, 413-442.	1.9	50
44	Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network. Atmospheric Measurement Techniques, 2011, 4, 1943-1964.	1.2	50
45	Trends and variations in CO, C ₂ H ₆ , and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C ₂ H ₆ . Atmospheric	1.9	50
46	Interhemispheric ratio and annual cycle of carbonyl sulfide (OCS) total column from ground-based solar FTIR spectra. Journal of Geophysical Research, 1998, 103, 8447-8454.	3.3	49
47	Long-term tropospheric formaldehyde concentrations deduced from ground-based fourier transform solar infrared measurements. Atmospheric Chemistry and Physics, 2009, 9, 7131-7142.	1.9	49
48	Multiyear infrared solar spectroscopic measurements of HCN, CO, C2H6, and C2H2tropospheric columns above Lauder, New Zealand (45°S latitude). Journal of Geophysical Research, 2002, 107, ACH 1-1.	3.3	48
49	Validation of MIPAS HNO ₃ operational data. Atmospheric Chemistry and Physics, 2007, 7, 4905-4934.	1.9	48
50	Validation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC. Atmospheric Measurement Techniques, 2012, 5, 2751-2761.	1.2	45
51	Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC. Atmospheric Measurement Techniques, 2017, 10, 1927-1956.	1.2	44
52	The Oxford Royal College of General Practitioners Clinical Informatics Digital Hub: Protocol to Develop Extended COVID-19 Surveillance and Trial Platforms. JMIR Public Health and Surveillance, 2020, 6, e19773.	1.2	44
53	Ozone seasonal evolution and photochemical production regime in the polluted troposphere in eastern China derived from high-resolution Fourier transform spectrometry (FTS) observations. Atmospheric Chemistry and Physics, 2018, 18, 14569-14583.	1.9	42
54	Using XCO ₂ retrievals for assessing the long-term consistency of NDACC/FTIR data sets. Atmospheric Measurement Techniques, 2015, 8, 1555-1573.	1.2	39

#	Article	IF	CITATIONS
55	COVID-19 Surveillance in a Primary Care Sentinel Network: In-Pandemic Development of an Application Ontology. JMIR Public Health and Surveillance, 2020, 6, e21434.	1.2	39
56	Tropospheric CH ₄ signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements. Atmospheric Measurement Techniques, 2014, 7, 2337-2360.	1.2	38
57	The role and response of primary healthcare services in the delivery of palliative care in epidemics and pandemics: A rapid review to inform practice and service delivery during the COVID-19 pandemic. Palliative Medicine, 2020, 34, 1182-1192.	1.3	38
58	Validation of ozone profile retrievals from infrared ground-based solar spectra. Geophysical Research Letters, 1996, 23, 1637-1640.	1.5	37
59	Ground-based infrared spectroscopic measurements of carbonyl sulfide: Free tropospheric trends from a 24-year time series of solar absorption measurements. Journal of Geophysical Research, 2002, 107, ACH 24-1.	3.3	37
60	Toward a chemical reanalysis in a coupled chemistryâ€climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7310-7343.	1.2	37
61	NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques, 2018, 11, 5049-5073.	1.2	37
62	The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model. Journal of Geophysical Research, 2011, 116, .	3.3	36
63	High spectral resolution solar absorption measurements of ethylene in a forest fire smoke plume using HITRAN parameters: Tropospheric vertical profile retrieval. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96, 301-309.	1.1	35
64	Trace gas emissions from biomass burning inferred from aerosol optical depth. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	34
65	Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry. Atmospheric Chemistry and Physics, 2007, 7, 1305-1312.	1.9	34
66	Daytime HONO, NO ₂ and aerosol distributions from MAX-DOAS observations in Melbourne. Atmospheric Chemistry and Physics, 2018, 18, 13969-13985.	1.9	34
67	Intercomparison of NDSC Ground-Based Solar FTIR Measurements of Atmospheric Gases at Lauder, New Zealand. Journal of Atmospheric and Oceanic Technology, 2003, 20, 1138-1153.	0.5	33
68	Measurement of methanol emissions from Australian wildfires by groundâ€based solar Fourier transform spectroscopy. Geophysical Research Letters, 2008, 35, .	1.5	33
69	The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005. Atmospheric Chemistry and Physics, 2017, 17, 2255-2277.	1.9	33
70	Correlation of aerosol and carbon monoxide at 45°S: Evidence of biomass burning emissions. Geophysical Research Letters, 2001, 28, 709-712.	1.5	31
71	Validation of five years (2003–2007) of SCIAMACHY CO total column measurements using ground-based spectrometer observations. Atmospheric Measurement Techniques, 2010, 3, 1457-1471.	1.2	31
72	Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions. Atmospheric Chemistry and Physics, 2015, 15, 7217-7245.	1.9	31

#	Article	IF	CITATIONS
73	Improvements to air mass calculations for ground-based infrared measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83, 109-113.	1.1	28
74	Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations. Atmospheric Chemistry and Physics, 2016, 16, 10911-10925.	1.9	28
75	Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO ₂ , CH ₄ , and CO. Atmospheric Measurement Techniques, 2020, 13, 4791-4839.	1.2	28
76	(H ₂ ¹⁶ O,) Tj ETQqO O O	rgBT /Over 3.7	lock 10 Tf 50 (26
77	Earth System Science Data, 2017, 9, 15-29. First intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change. Atmospheric Measurement Techniques, 2013, 6, 397-418.	1.2	24
78	HNO ₃ and HCl amounts over McMurdo during the spring of 1987. Journal of Geophysical Research, 1989, 94, 16615-16618.	3.3	23
79	Ground-based infrared solar spectroscopic measurements of carbon monoxide during 1994 Measurement of Air Pollution From Space flights. Journal of Geophysical Research, 1998, 103, 19317-19325.	3.3	23
80	Remote sensing of CO ₂ and CH ₄ using solar absorption spectrometry with a low resolution spectrometer. Atmospheric Measurement Techniques, 2012, 5, 1627-1635.	1.2	23
81	Multistation intercomparison of column-averaged methane from NDACC and TCCON: impact of dynamical variability. Atmospheric Measurement Techniques, 2014, 7, 4081-4101.	1.2	22
82	Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere, 2018, 9, 500.	1.0	22
83	Nitrogen species in the post-Pinatubo stratosphere: Model analysis utilizing UARS measurements. Journal of Geophysical Research, 1999, 104, 8247-8262.	3.3	21
84	Spaceborne Measurements of Formic and Acetic Acids: A Global View of the Regional Sources. Geophysical Research Letters, 2020, 47, e2019GL086239.	1.5	21
85	The Carbon Cycle of Southeast Australia During 2019–2020: Drought, Fires, and Subsequent Recovery. AGU Advances, 2021, 2, .	2.3	21
86	Positive trends in Southern Hemisphere carbonyl sulfide. Geophysical Research Letters, 2015, 42, 9473-9480.	1.5	20
87	Towards understanding the variability in biospheric CO ₂ Âfluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO&:lt:sub&:gt:2&:lt:/sub&:gt:. Atmospheric Chemistry and Physics. 2016. 16. 2123-2138.	1.9	20
88	Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmospheric Chemistry and Physics, 2021, 21, 6365-6387.	1.9	20
89	TCCON and NDACC X _{CO} measurements: difference, discussion and application. Atmospheric Measurement Techniques, 2019, 12, 5979-5995.	1.2	19
90	Validation of version 5.20 ILAS HNO3, CH4, N2O, O3, and NO2using ground-based measurements at Arrival Heights and Kiruna. Journal of Geophysical Research, 2002, 107, ILS 5-1.	3.3	18

#	Article	IF	CITATIONS
91	Satellite and ground-based measurements of XCO ₂ in aÂremote semiarid region of Australia. Earth System Science Data, 2019, 11, 935-946.	3.7	18
92	Southern hemisphere ground based measurements of carbonyl fluoride (COF2) and hydrogen fluoride (HF): Partitioning between fluoride reservoir species. Geophysical Research Letters, 1994, 21, 797-800.	1.5	17
93	Ground-based measurement of strato–mesospheric CO by a FTIR spectrometer over Poker Flat, Alaska. Advances in Space Research, 2005, 35, 2024-2030.	1.2	17
94	A global model study of ozone enhancement during the August 2003 heat wave in Europe. Environmental Chemistry, 2007, 4, 285.	0.7	17
95	Validation of SCIAMACHY HDO/H ₂ O measurements using the TCCON and NDACC-MUSICA networks. Atmospheric Measurement Techniques, 2015, 8, 1799-1818.	1.2	17
96	An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model. Atmospheric Measurement Techniques, 2019, 12, 1393-1408.	1.2	17
97	Characteristics and error estimation of stratospheric ozone and ozone-related species over Poker Flat (65Ű N, 147Ű W), Alaska observed by a ground-based FTIR spectrometer from 2001 to 2003. Atmospheric Chemistry and Physics, 2007, 7, 3791-3810.	1.9	16
98	Southern hemisphere mid-latitude seasonal cycle in total column nitric acid. Geophysical Research Letters, 1994, 21, 593-596.	1.5	15
99	Pacific Exploratory Mission-Tropics carbon monoxide measurements in historical context. Journal of Geophysical Research, 1999, 104, 26195-26207.	3.3	15
100	Long-range correlations in Fourier transform infrared, satellite, and modeled CO in the Southern Hemisphere. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	15
101	Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa Station, Antarctica, in 2007 and 2011. Atmospheric Chemistry and Physics, 2020, 20, 1043-1074.	1.9	15
102	Comparison of infrared and Dobson total ozone columns measured from Lauder, New Zealand. Geophysical Research Letters, 1996, 23, 1025-1028.	1.5	14
103	Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations. Journal of Geophysical Research, 2006, 111, .	3.3	14
104	Stratospheric HF column abundances above Kitt Peak (31.9°N latitude): trends from 1977 to 2001 and correlations with stratospheric HCl columns. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 74, 205-216.	1.1	13
105	Spectral line finding program for atmospheric remote sensing using full radiation transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 97, 112-125.	1.1	13
106	Direct access cancer testing in primary care: a systematic review of use and clinical outcomes. British Journal of General Practice, 2018, 68, e594-e603.	0.7	13
107	Observed Hemispheric Asymmetry in Stratospheric Transport Trends From 1994 to 2018. Geophysical Research Letters, 2020, 47, e2020GL088567.	1.5	13
108	Southern hemisphere midlatitude ground-based measurements of ClONO2: Method of analysis, seasonal cycle and long term-trend. Journal of Geophysical Research, 1995, 100, 23183.	3.3	12

#	Article	IF	CITATIONS
109	Retrieval of vertical profiles and tropospheric CO ₂ columns based on high-resolution FTIR over Hefei, China. Optics Express, 2021, 29, 4958.	1.7	12
110	Global Atmospheric OCS Trend Analysis From 22 NDACC Stations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	12
111	Correlation relationships of stratospheric molecular constituents from high spectral resolution, ground-based infrared solar absorption spectra. Journal of Geophysical Research, 2000, 105, 14637-14652.	3.3	11
112	Seasonal variations of CO and HCN in the troposphere measured by solar absorption spectroscopy over Poker Flat, Alaska. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	11
113	First detection of meso-thermospheric Nitric Oxide (NO) by ground-based FTIR solar absorption spectroscopy. Geophysical Research Letters, 2006, 33, .	1.5	11
114	Usability of optical spectrum analyzer in measuring atmospheric CO ₂ and CH ₄ column densities: inspection with FTS and aircraft profiles in situ. Atmospheric Measurement Techniques, 2012, 5, 2593-2600.	1.2	10
115	Comparison of the GOSAT TANSO-FTS TIR CH ₄ volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations. Atmospheric Measurement Techniques, 2017, 10, 3697-3718.	1.2	10
116	Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON). Atmospheric Measurement Techniques, 2022, 15, 2433-2463.	1.2	10
117	Springtime enhancement of upper tropospheric aerosol at 45°S. Geophysical Research Letters, 2001, 28, 1495-1498.	1.5	9
118	An Intercomparison of Ground-Based Solar FTIR Measurements of Atmospheric Gases at Eureka, Canada. Journal of Atmospheric and Oceanic Technology, 2008, 25, 2028-2036.	0.5	9
119	Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC). Atmospheric Measurement Techniques, 2021, 14, 1239-1252.	1.2	9
120	Increase in the vertical column abundance of HCFC-22 (CHClF2) above Lauder, New Zealand, between 1985 and 1994. Journal of Geophysical Research, 1997, 102, 8861-8865.	3.3	8
121	Acetylene (C ₂ H ₂) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model. Atmospheric Chemistry and Physics, 2015, 15, 10509-10527.	1.9	7
122	Exercising and face masks: An important hypothesis buried in a selective review. Medical Hypotheses, 2020, 144, 110255.	0.8	7
123	The impact of primary care supported shielding on the risk of mortality in people vulnerable to COVID-19: English sentinel network matched cohort study. Journal of Infection, 2021, 83, 228-236.	1.7	7
124	Stratomesospheric CO measured by a groundâ€based Fourier Transform Spectrometer over Poker Flat, Alaska: Comparisons with Odin/SMR and a 2â€Ð model. Journal of Geophysical Research, 2007, 112, .	3.3	6
125	Decreasing Trend in Formaldehyde Detected From 20â€Year Record at Wollongong, Southeast Australia. Geophysical Research Letters, 2019, 46, 8464-8473.	1.5	6
126	Retrieval of Stratospheric HNO3 and HCl Based on Ground-Based High-Resolution Fourier Transform Spectroscopy. Remote Sensing, 2021, 13, 2159.	1.8	6

#	Article	IF	CITATIONS
127	Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
128	Ground-based measurements of atmospheric NH3 by Fourier transform infrared spectrometry at Hefei and comparisons with IASI data. Atmospheric Environment, 2022, 287, 119256.	1.9	6
129	Infrared spectroscopic measurements of the total column abundance of ethane (C2H6) above Lauder, New Zealand. Journal of Geophysical Research, 1994, 99, 25941.	3.3	5
130	2019–20 Australian Bushfires and Anomalies in Carbon Monoxide Surface and Column Measurements. Atmosphere, 2021, 12, 755.	1.0	5
131	Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI. Atmospheric Measurement Techniques, 2020, 13, 6501-6519.	1.2	5
132	Spectral measurements of HCl in the plume of the Antarctic Volcano Mount Erebus. Geophysical Research Letters, 1998, 25, 2421-2424.	1.5	4
133	UMBRELLA protocol: systematic reviews of multivariable biomarker prognostic models developed to predict clinical outcomes in patients with heart failure. Diagnostic and Prognostic Research, 2020, 4, 13.	0.8	4
134	Variations in the tropical uplift following the Pinatubo eruption studied by infrared solar absorption spectrometry. Geophysical Research Letters, 2000, 27, 2609-2612.	1.5	3
135	Natriuretic peptide referral thresholds and heart failure diagnosis: population-based cohort study. European Heart Journal, 2021, 42, .	1.0	0