James M Gold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2446993/publications.pdf

Version: 2024-02-01

		53794	25787
158	12,858	45	108
papers	citations	h-index	g-index
150	150	150	0260
159	159	159	9268
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The MATRICS Consensus Cognitive Battery, Part 1: Test Selection, Reliability, and Validity. American Journal of Psychiatry, 2008, 165, 203-213.	7.2	1,863
2	Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 2004, 56, 301-307.	1.3	818
3	Overlooking the Obvious. Archives of General Psychiatry, 2007, 64, 532.	12.3	763
4	The MATRICS Consensus Cognitive Battery, Part 2: Co-Norming and Standardization. American Journal of Psychiatry, 2008, 165, 214-220.	7.2	593
5	Reward Processing in Schizophrenia: A Deficit in the Representation of Value. Schizophrenia Bulletin, 2008, 34, 835-847.	4. 3	476
6	Negative Symptoms of Schizophrenia Are Associated with Abnormal Effort-Cost Computations. Biological Psychiatry, 2013, 74, 130-136.	1.3	353
7	A Review of Reward Processing and Motivational Impairment in Schizophrenia. Schizophrenia Bulletin, 2014, 40, S107-S116.	4.3	343
8	Cognitive deficits as treatment targets in schizophrenia. Schizophrenia Research, 2004, 72, 21-28.	2.0	303
9	A New Perspective on Anhedonia in Schizophrenia. American Journal of Psychiatry, 2012, 169, 364-373.	7.2	303
10	A Meta-Analysis of Mismatch Negativity in Schizophrenia: From Clinical Risk to Disease Specificity and Progression. Biological Psychiatry, 2016, 79, 980-987.	1.3	300
11	Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophrenia Research, 2007, 93, 296-303.	2.0	298
12	Selective Reinforcement Learning Deficits in Schizophrenia Support Predictions from Computational Models of Striatal-Cortical Dysfunction. Biological Psychiatry, 2007, 62, 756-764.	1.3	283
13	Negative Symptoms and the Failure to Represent the Expected Reward Value of Actions. Archives of General Psychiatry, 2012, 69, 129.	12.3	270
14	Cognitive Correlates of Job Tenure Among Patients With Severe Mental Illness. American Journal of Psychiatry, 2002, 159, 1395-1402.	7.2	258
15	The Construct of Attention in Schizophrenia. Biological Psychiatry, 2008, 64, 34-39.	1.3	253
16	Deficits in Positive Reinforcement Learning and Uncertainty-Driven Exploration Are Associated with Distinct Aspects of Negative Symptoms in Schizophrenia. Biological Psychiatry, 2011, 69, 424-431.	1.3	195
17	Visual Perceptual and Working Memory Impairments in Schizophrenia. Archives of General Psychiatry, 2002, 59, 146.	12.3	193
18	Working Memory Contributions to Reinforcement Learning Impairments in Schizophrenia. Journal of Neuroscience, 2014, 34, 13747-13756.	3.6	175

#	Article	IF	Citations
19	Decision-Making Impairments in the Context of Intact Reward Sensitivity in Schizophrenia. Biological Psychiatry, 2008, 64, 62-69.	1.3	162
20	The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia Neuropsychology, 2013, 27, 220-229.	1.3	160
21	Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia, 2015, 73, 82-93.	1.6	160
22	Effort-Based Decision-Making Paradigms for Clinical Trials in Schizophrenia: Part 1â€"Psychometric Characteristics of 5 Paradigms. Schizophrenia Bulletin, 2015, 41, 1045-1054.	4.3	137
23	The Latent Structure of Negative Symptoms in Schizophrenia. JAMA Psychiatry, 2018, 75, 1271.	11.0	135
24	Intact attentional control of working memory encoding in schizophrenia Journal of Abnormal Psychology, 2006, 115, 658-673.	1.9	133
25	Reduced Capacity but Spared Precision and Maintenance of Working Memory Representations in Schizophrenia. Archives of General Psychiatry, 2010, 67, 570.	12.3	131
26	Turning it Upside Down: Areas of Preserved Cognitive Function in Schizophrenia. Neuropsychology Review, 2009, 19, 294-311.	4.9	121
27	Altered probabilistic learning and response biases in schizophrenia: Behavioral evidence and neurocomputational modeling Neuropsychology, 2011, 25, 86-97.	1.3	114
28	Effort-Based Decision Making: A Novel Approach for Assessing Motivation in Schizophrenia:. Schizophrenia Bulletin, 2015, 41, 1035-1044.	4.3	114
29	The Roles of Reward, Default, and Executive Control Networks in Set-Shifting Impairments in Schizophrenia. PLoS ONE, 2013, 8, e57257.	2.5	109
30	Impaired top–down control of visual search in schizophrenia. Schizophrenia Research, 2007, 94, 148-155.	2.0	107
31	Learning-related changes in brain activity following errors and performance feedback in schizophrenia. Schizophrenia Research, 2008, 99, 274-285.	2.0	102
32	Effort-Based Decision-Making Paradigms for Clinical Trials in Schizophrenia: Part 2â€"External Validity and Correlates. Schizophrenia Bulletin, 2015, 41, 1055-1065.	4.3	95
33	Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia. Biological Psychiatry, 2017, 82, 431-439.	1.3	88
34	Clinical, Functional, and Intertask Correlations of Measures Developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. Schizophrenia Bulletin, 2012, 38, 144-152.	4.3	83
35	Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 145-154.	2.0	79
36	Probabilistic Reinforcement Learning in Patients With Schizophrenia: Relationships to Anhedonia and Avolition. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 460-473.	1.5	79

#	Article	IF	Citations
37	Impaired Activation in Cognitive Control Regions Predicts Reversal Learning in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 484-493.	4.3	73
38	Toward the Neural Mechanisms of Reduced Working Memory Capacity in Schizophrenia. Cerebral Cortex, 2013, 23, 1582-1592.	2.9	72
39	Explicit and implicit reinforcement learning across the psychosis spectrum Journal of Abnormal Psychology, 2017, 126, 694-711.	1.9	65
40	Resting-State Connectivity Biomarkers of Cognitive Performance and Social Function in Individuals With Schizophrenia Spectrum Disorder and Healthy Control Subjects. Biological Psychiatry, 2018, 84, 665-674.	1.3	64
41	Selective Attention, Working Memory, and Executive Function as Potential Independent Sources of Cognitive Dysfunction in Schizophrenia. Schizophrenia Bulletin, 2018, 44, 1227-1234.	4.3	63
42	Motivational Deficits in Schizophrenia and the Representation of Expected Value. Current Topics in Behavioral Neurosciences, 2015, 27, 375-410.	1.7	61
43	Posterior Parietal Cortex Dysfunction Is Central to Working Memory Storage and Broad Cognitive Deficits in Schizophrenia. Journal of Neuroscience, 2018, 38, 8378-8387.	3.6	55
44	Working Memory Consolidation Is Abnormally Slow in Schizophrenia Journal of Abnormal Psychology, 2005, 114, 279-290.	1.9	53
45	Impaired Working Memory Capacity Is Not Caused by Failures of Selective Attention in Schizophrenia. Schizophrenia Bulletin, 2015, 41, 366-373.	4.3	52
46	Dissociation of Response and Feedback Negativity in Schizophrenia: Electrophysiological and Computational Evidence for a Deficit in the Representation of Value. Frontiers in Human Neuroscience, 2011, 5, 123.	2.0	51
47	The role of low cognitive effort and negative symptoms in neuropsychological impairment in schizophrenia Neuropsychology, 2015, 29, 282-291.	1.3	51
48	The Hyperfocusing Hypothesis: A New Account of Cognitive Dysfunction in Schizophrenia. Schizophrenia Bulletin, 2019, 45, 991-1000.	4.3	51
49	A Psychometric Comparison of the Clinical Assessment Interview for Negative Symptoms and the Brief Negative Symptom Scale. Schizophrenia Bulletin, 2016, 42, 1384-1394.	4.3	50
50	Visuospatial attention in schizophrenia: Deficits in broad monitoring Journal of Abnormal Psychology, 2012, 121, 119-128.	1.9	49
51	Emotion regulation abnormalities in schizophrenia: Directed attention strategies fail to decrease the neurophysiological response to unpleasant stimuli Journal of Abnormal Psychology, 2015, 124, 288-301.	1.9	47
52	Psychological predictors of functional outcome in people with schizophrenia. Schizophrenia Research, 2014, 157, 299-304.	2.0	46
53	Plasma oxytocin levels predict olfactory identification and negative symptoms in individuals with schizophrenia. Schizophrenia Research, 2015, 162, 57-61.	2.0	46
54	Working Memory Impairment Across Psychotic disorders. Schizophrenia Bulletin, 2019, 45, 804-812.	4.3	46

#	Article	IF	Citations
55	Hypothetical decision making in schizophrenia: The role of expected value computation and "irrational―biases. Psychiatry Research, 2013, 209, 142-149.	3.3	44
56	Plasma oxytocin levels predict social cue recognition in individuals with schizophrenia. Schizophrenia Research, 2015, 162, 47-51.	2.0	44
57	Integrating frequency and magnitude information in decision-making in schizophrenia: An account of patient performance on the lowa Gambling Task. Journal of Psychiatric Research, 2015, 66-67, 16-23.	3.1	43
58	Endogenous oxytocin levels are associated with the perception of emotion in dynamic body expressions in schizophrenia. Schizophrenia Research, 2015, 162, 52-56.	2.0	41
59	Network Analysis Reveals Which Negative Symptom Domains Are Most Central in Schizophrenia vs Bipolar Disorder. Schizophrenia Bulletin, 2019, 45, 1319-1330.	4.3	41
60	Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia. Schizophrenia Research, 2014, 160, 80-87.	2.0	39
61	Evidence for Accelerated Decline of Functional Brain Network Efficiency in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 753-761.	4.3	39
62	Working memory for visual features and conjunctions in schizophrenia. Journal of Abnormal Psychology, 2003, 112, 61-71.	1.9	39
63	Hyperfocusing in schizophrenia: Evidence from interactions between working memory and eye movements Journal of Abnormal Psychology, 2014, 123, 783-795.	1.9	38
64	Endogenous oxytocin levels are associated with impaired social cognition and neurocognition in schizophrenia. Journal of Psychiatric Research, 2019, 112, 38-43.	3.1	38
65	Functional network changes and cognitive control in schizophrenia. Neurolmage: Clinical, 2017, 15, 161-170.	2.7	37
66	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biological Psychiatry, 2020, 88, e5-e10.	1.3	36
67	Report on ISCTM Consensus Meeting on Clinical Assessment of Response to Treatment of Cognitive Impairment in Schizophrenia. Schizophrenia Bulletin, 2015, 42, sbv111.	4.3	34
68	"Generalized Cognitive Deficit" in Schizophrenia: Overused or Underappreciated?. Schizophrenia Bulletin, 2013, 39, 263-265.	4.3	33
69	Understanding the Association Between Negative Symptoms and Performance on Effort-Based Decision-Making Tasks: The Importance of Defeatist Performance Beliefs. Schizophrenia Bulletin, 2018, 44, 1217-1226.	4.3	32
70	Lower- and Higher-Level Social Cognitive Factors Across Individuals With Schizophrenia Spectrum Disorders and Healthy Controls: Relationship With Neurocognition and Functional Outcome. Schizophrenia Bulletin, 2019, 45, 629-638.	4.3	32
71	Temporal Stability and Moderating Effects of Age and Sex on CNTRaCS Task Performance. Schizophrenia Bulletin, 2014, 40, 835-844.	4.3	31
72	Relationships Between Divided Attention and Working Memory Impairment in People With Schizophrenia. Schizophrenia Bulletin, 2014, 40, 1462-1471.	4.3	31

#	Article	IF	CITATIONS
73	Hyperfocusing of attention on goal-related information in schizophrenia: Evidence from electrophysiology Journal of Abnormal Psychology, 2017, 126, 106-116.	1.9	31
74	Motivational Deficits in Schizophrenia Are Associated With Reduced Differentiation Between Gain and Loss-Avoidance Feedback in the Striatum. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 239-247.	1.5	31
75	Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 76-90.	2.0	31
76	Electrophysiological Evidence for Hyperfocusing of Spatial Attention in Schizophrenia. Journal of Neuroscience, 2017, 37, 3813-3823.	3.6	30
77	Separable and Replicable Neural Strategies During Social Brain Function in People With and Without Severe Mental Illness. American Journal of Psychiatry, 2019, 176, 521-530.	7.2	30
78	All or nothing belief updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain, 2021, 144, 1013-1029.	7.6	30
79	Mild Reinforcement Learning Deficits in Patients With First-Episode Psychosis. Schizophrenia Bulletin, 2016, 42, 1476-1485.	4.3	26
80	Impaired Context Processing is Attributable to Global Neuropsychological Impairment in Schizophrenia and Psychotic Bipolar Disorder. Schizophrenia Bulletin, 2017, 43, sbw081.	4.3	26
81	Altered spatial profile of distraction in people with schizophrenia Journal of Abnormal Psychology, 2017, 126, 1077-1086.	1.9	25
82	Is Attentional Filtering Impaired in Schizophrenia?. Schizophrenia Bulletin, 2019, 45, 1001-1011.	4.3	24
83	Peripheral oxytocin and vasopressin are associated with clinical symptom severity and cognitive functioning in midlife women with chronic schizophrenia. Schizophrenia Research, 2018, 195, 409-411.	2.0	23
84	Evidence of reward system dysfunction in youth at clinical high-risk for psychosis from two event-related fMRI paradigms. Schizophrenia Research, 2020, 226, 111-119.	2.0	23
85	Predictors of neuropsychological effort test performance in schizophrenia. Schizophrenia Research, 2015, 162, 205-210.	2.0	22
86	The Positivity Offset Theory of Anhedonia in Schizophrenia. Clinical Psychological Science, 2017, 5, 226-238.	4.0	22
87	Randomized controlled trial of a gluten-free diet in patients with schizophrenia positive for antigliadin antibodies (AGA lgG): a pilot feasibility study. Journal of Psychiatry and Neuroscience, 2019, 44, 269-276.	2.4	22
88	The Critical Need for Help-Seeking Controls in Clinical High-Risk Research. Clinical Psychological Science, 2019, 7, 1171-1189.	4.0	21
89	Paradigms for Assessing Hedonic Processing and Motivation in Humans: Relevance to Understanding Negative Symptoms in Psychopathology. Schizophrenia Bulletin, 2017, 43, 701-705.	4.3	20
90	Self versus informant reports on the specific levels of functioning scale: Relationships to depression and cognition in schizophrenia and schizoaffective disorder. Schizophrenia Research: Cognition, 2017, 9, 1-7.	1.3	20

#	Article	IF	CITATIONS
91	White matter brain aging in relationship to schizophrenia and its cognitive deficit. Schizophrenia Research, 2021, 230, 9-16.	2.0	20
92	Load-dependent hyperdeactivation of the default mode network in people with schizophrenia. Schizophrenia Research, 2017, 185, 190-196.	2.0	19
93	Glutamatergic metabolites among adolescents at risk for psychosis. Psychiatry Research, 2017, 257, 179-185.	3.3	19
94	Reduction of Pavlovian Bias in Schizophrenia: Enhanced Effects in Clozapine-Administered Patients. PLoS ONE, 2016, 11, e0152781.	2.5	19
95	Detecting reliable cognitive change in individual patients with the MATRICS Consensus Cognitive Battery. Schizophrenia Research, 2014, 159, 182-187.	2.0	18
96	Two Factors, Five Factors, or Both? External Validation Studies of Negative Symptom Dimensions in Schizophrenia. Schizophrenia Bulletin, 2022, 48, 620-630.	4.3	18
97	Cognition-emotion interactions are modulated by working memory capacity in individuals with schizophrenia. Schizophrenia Research, 2012, 141, 257-261.	2.0	17
98	Rasagiline in the Treatment of the Persistent Negative Symptoms of Schizophrenia. Schizophrenia Bulletin, 2015, 41, 900-908.	4.3	17
99	Assessing the information content of ERP signals in schizophrenia using multivariate decoding methods. NeuroImage: Clinical, 2020, 25, 102179.	2.7	17
100	The effects of combined oxytocin and cognitive behavioral social skills training on social cognition in schizophrenia. Psychological Medicine, 2019, 49, 1731-1739.	4.5	16
101	Neuropsychological Performance Among Individuals at Clinical High-Risk for Psychosis vs Putatively Low-Risk Peers With Other Psychopathology: A Systematic Review and Meta-Analysis. Schizophrenia Bulletin, 2022, 48, 999-1010.	4.3	16
102	CURRENT PROGRESS IN SCHIZOPHRENIA RESEARCH. Journal of Nervous and Mental Disease, 2002, 190, 638-639.	1.0	15
103	Enhanced distraction by magnocellular salience signals in schizophrenia. Neuropsychologia, 2014, 56, 359-366.	1.6	15
104	Hyperdeactivation of the Default Mode Network in People With Schizophrenia When Focusing Attention in Space. Schizophrenia Bulletin, 2016, 42, 1158-1166.	4.3	15
105	Detecting motor slowing in clinical high risk for psychosis in a computerized finger tapping model. European Archives of Psychiatry and Clinical Neuroscience, 2020, 270, 393-397.	3.2	15
106	Impaired Expected Value Computations Coupled With Overreliance on Stimulus-Response Learning in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 916-926.	1.5	14
107	Latent Profiles of Cognitive Control, Episodic Memory, and Visual Perception Across Psychiatric Disorders Reveal a Dimensional Structure. Schizophrenia Bulletin, 2020, 46, 154-162.	4.3	14
108	Reliability and Replicability of Implicit and Explicit Reinforcement Learning Paradigms in People With Psychotic Disorders. Schizophrenia Bulletin, 2021, 47, 731-739.	4.3	14

#	Article	IF	Citations
109	Is cognitive impairment in schizophrenia ready for diagnostic prime time?. World Psychiatry, 2008, 7, 32-33.	10.4	13
110	Enhanced vulnerability to distraction does not account for working memory capacity reduction in people with schizophrenia. Schizophrenia Research: Cognition, 2014, 1, 149-154.	1.3	13
111	Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and Magnitude of Recent Outcomes. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 280-290.	1.5	13
112	Enhancing Psychosis Risk Prediction Through Computational Cognitive Neuroscience. Schizophrenia Bulletin, 2020, 46, 1346-1352.	4.3	13
113	Combined Oxytocin and Cognitive Behavioral Social Skills Training for Social Function in People With Schizophrenia. Journal of Clinical Psychopharmacology, 2021, 41, 236-243.	1.4	13
114	Testing sensory and cognitive explanations of the antisaccade deficit in schizophrenia Journal of Abnormal Psychology, 2013, 122, 1111-1120.	1.9	12
115	Probing the Dynamic Updating of Value in Schizophrenia Using a Sensory-Specific Satiety Paradigm. Schizophrenia Bulletin, 2015, 41, 1115-1122.	4.3	12
116	Using Computational Modeling to Capture Schizophrenia-Specific Reinforcement Learning Differences and Their Implications on Patient Classification. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 1035-1046.	1.5	12
117	Probability and magnitude evaluation in schizophrenia. Schizophrenia Research: Cognition, 2016, 5, 41-46.	1.3	11
118	The effects of oxytocin and galantamine on objectively-defined vocal and facial expression: Data from the CIDAR study. Schizophrenia Research, 2017, 188, 141-143.	2.0	10
119	Anhedonia reflects impairment in making relative value judgments between positive and neutral stimuli in schizophrenia. Schizophrenia Research, 2018, 197, 156-161.	2.0	10
120	Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia. Schizophrenia Bulletin, 2012, 38, 103-103.	4.3	9
121	Social Cognitive Networks and Social Cognitive Performance Across Individuals With Schizophrenia Spectrum Disorders and Healthy Control Participants. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 1202-1214.	1.5	9
122	Temporal-thalamic and cingulo-opercular connectivity in people with schizophrenia. Neurolmage: Clinical, 2021, 29, 102531.	2.7	9
123	Increased face detection responses on the mooney faces test in people at clinical high risk for psychosis. NPJ Schizophrenia, 2021, 7, 26.	3.6	9
124	Association Between Failures in Perceptual Updating and the Severity of Psychosis in Schizophrenia. JAMA Psychiatry, 2022, 79, 169.	11.0	9
125	Both unmedicated and medicated individuals with schizophrenia show impairments across a wide array of cognitive and reinforcement learning tasks. Psychological Medicine, 2022, 52, 1115-1125.	4.5	8
126	Differential Effects of Psychotic Illness on Directed and Random Exploration. Computational Psychiatry, 2020, 4, 18.	2.0	8

#	Article	IF	Citations
127	The impact of reward on attention in schizophrenia. Schizophrenia Research: Cognition, 2018, 12, 66-73.	1.3	7
128	Increased conflict-induced slowing, but no differences in conflict-induced positive or negative prediction error learning in patients with schizophrenia. Neuropsychologia, 2019, 123, 131-140.	1.6	7
129	Impaired Filtering and Hyperfocusing: Neural Evidence for Distinct Selective Attention Abnormalities in People with Schizophrenia. Cerebral Cortex, 2022, 32, 1950-1964.	2.9	7
130	Increased influence of a previously attended feature in people with schizophrenia Journal of Abnormal Psychology, 2020, 129, 305-311.	1.9	6
131	Endogenous oxytocin levels are associated with facial emotion recognition accuracy but not gaze behavior in individuals with schizophrenia. Acta Psychiatrica Scandinavica, 2022, 145, 494-506.	4.5	6
132	Cortical hyperactivation at low working memory load: A primary processing abnormality in people with schizophrenia?. NeuroImage: Clinical, 2020, 26, 102270.	2.7	5
133	Increased repulsion of working memory representations in schizophrenia Journal of Abnormal Psychology, 2020, 129, 845-857.	1.9	5
134	A Randomized Clinical Trial of Oxytocin or Galantamine in Schizophrenia: Assessing the Impact on Behavioral, Lexical, and Self-Report Indicators of Social Affiliation. Schizophrenia Bulletin Open, 2020, 1, sgaa001.	1.7	4
135	Antisaccade Deficits in Schizophrenia Can Be Driven by Attentional Relevance of the Stimuli. Schizophrenia Bulletin, 2021, 47, 363-372.	4.3	4
136	Relations Among Anhedonia, Reinforcement Learning, and Global Functioning in Help-seeking Youth. Schizophrenia Bulletin, 2021, 47, 1534-1543.	4.3	4
137	Oculomotor inhibition and location priming in schizophrenia Journal of Abnormal Psychology, 2021, 130, 651-664.	1.9	4
138	Enhancing Prediction of Psychosis Risk With Cognitive Measures. JAMA Psychiatry, 2021, 78, 827.	11.0	4
139	Refining the Empirical Constraints on Computational Models of Spatial Working Memory in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 913-922.	1.5	4
140	Retention of Value Representations Across Time in People With Schizophrenia and Healthy Control Subjects. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 420-428.	1.5	3
141	Computerized Assessment of Psychosis Risk. Journal of Psychiatry and Brain Science, 2021, 6, .	0.5	3
142	Metabolic disturbances, hemoglobin A1c, and social cognition impairment in Schizophrenia spectrum disorders. Translational Psychiatry, 2022, 12, .	4.8	3
143	S45. DEFICITS IN INFORMATION-SEEKING BEHAVIOR IN SCHIZOPHRENIA: AN ALTERNATIVE MECHANISM OF AVOLITION. Schizophrenia Bulletin, 2019, 45, S323-S323.	4.3	2
144	People with schizophrenia show enhanced cognitive costs of maintaining a single item in working memory. Psychological Medicine, 2020, 50, 867-873.	4. 5	2

#	Article	IF	CITATIONS
145	The characteristics of cognitive neuroscience tests in a schizophrenia cognition clinical trial: Psychometric properties and correlations with standard measures. Schizophrenia Research: Cognition, 2020, 19, 100161.	1.3	2
146	Neural basis of the visual working memory deficit in schizophrenia: Merging evidence from fMRI and EEG. Schizophrenia Research, 2021, 236, 61-68.	2.0	2
147	OUP accepted manuscript. Schizophrenia Bulletin, 2022, , .	4.3	2
148	A Longitudinal Examination of Real-World Sedentary Behavior in Adults with Schizophrenia-Spectrum Disorders in a Clinical Trial of Combined Oxytocin and Cognitive Behavioral Social Skills Training. Behavioral Sciences (Basel, Switzerland), 2022, 12, 60.	2.1	2
149	Linking salience signaling with early adversity and affective distress in individuals at clinical high-risk for psychosis: results from an event-related fMRI study. Schizophrenia Bulletin Open, 0, , .	1.7	2
150	O4.3. PEOPLE WITH SCHIZOPHRENIA SHOW GREATER COGNITIVE COSTS OF STORING A SINGLE ITEM IN WORKING MEMORY. Schizophrenia Bulletin, 2019, 45, S169-S170.	4.3	0
151	F9. REDUCED UNCERTAINTY-DRIVEN EXPLORATION AND ASSOCIATED NEURAL REWARD-RELATED SIGNALS RELATE TO MOTIVATIONAL DEFICIT SEVERITY. Schizophrenia Bulletin, 2019, 45, S257-S258.	4.3	O
152	S41. INFLUENCE OF PRIORS ON MOTION PERCEPTION IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2019, 45, S321-S322.	4.3	0
153	34.1 SEPARABLE AND REPLICABLE NEURAL STRATEGIES DURING SOCIAL BRAIN FUNCTION IN PEOPLE WITH AND WITHOUT SEVERE MENTAL ILLNESS. Schizophrenia Bulletin, 2019, 45, S145-S145.	4.3	0
154	O3.1. CLUSTER ANALYSIS FINDS THREE CLINICALLY-RELEVANT SUBGROUPS OF TRAIT EMOTIONAL EXPERIENCE IN SCHIZOPHRENIA OUTPATIENTS. Schizophrenia Bulletin, 2020, 46, S5-S6.	4.3	0
155	L-Tetrahydropalmatine, a Novel Dopamine Antagonist, Fails to Improve Psychiatric Symptoms as Adjunctive Treatment for Schizophrenia. Schizophrenia Bulletin Open, 2020, 1, .	1.7	0
156	Saccadic evidence for spatial hyperfocusing in people with schizophrenia. Journal of Vision, 2017, 17, 1328.	0.3	0
157	Spatial recall performance: Differential landmark bias in schizophrenia. Journal of Vision, 2017, 17, 1332.	0.3	0
158	Schizophrenia Patients Show Largely Similar Salience Signaling Compared to Healthy Controls in an Observational Task Environment. Brain Sciences, 2021, 11, 1610.	2.3	0