Barun Bhhatarai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2446905/publications.pdf

Version: 2024-02-01

26 papers 1,421 citations

489802 18 h-index 25 g-index

27 all docs

27 docs citations

times ranked

27

2823 citing authors

#	Article	IF	Citations
1	The activities of drug inactive ingredients on biological targets. Science, 2020, 369, 403-413.	6.0	61
2	CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environmental Health Perspectives, 2020, 128, 27002.	2.8	120
3	Opportunities and challenges using artificial intelligence in ADME/Tox. Nature Materials, 2019, 18, 418-422.	13.3	69
4	Performance evaluation of the GastroPlusTM software tool for prediction of the toxicokinetic parameters of chemicals. SAR and QSAR in Environmental Research, 2018, 29, 875-893.	1.0	12
5	Alternative approaches for identifying acute systemic toxicity: Moving from research to regulatory testing. Toxicology in Vitro, 2017, 41, 245-259.	1.1	54
6	Evaluation of OASIS QSAR Models Using ToxCastâ,, ¢ <i>in Vitro</i> Estrogen and Androgen Receptor Binding Data and Application in an Integrated Endocrine Screening Approach. Environmental Health Perspectives, 2016, 124, 1453-1461.	2.8	26
7	Evaluation of TOPKAT, Toxtree, and Derek Nexus <i>in Silico</i> Models for Ocular Irritation and Development of a Knowledge-Based Framework To Improve the Prediction of Severe Irritation. Chemical Research in Toxicology, 2016, 29, 810-822.	1.7	44
8	Acute Toxicity Prediction in Multiple Species by Leveraging Mechanistic ToxCast Mitochondrial Inhibition Data and Simulation of Oral Bioavailability. Toxicological Sciences, 2015, 147, 386-396.	1.4	17
9	The QSPR-THESAURUS: The Online Platform of the CADASTER Project. ATLA Alternatives To Laboratory Animals, 2014, 42, 13-24.	0.7	10
10	Allosteric Inhibition of the IRE1 $\hat{l}\pm$ RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress. Cell, 2014, 158, 534-548.	13.5	384
11	A sphingosine 1-phosphate receptor 2 selective allosteric agonist. Bioorganic and Medicinal Chemistry, 2013, 21, 5373-5382.	1.4	53
12	GPCR ontology: development and application of a G protein-coupled receptor pharmacology knowledge framework. Bioinformatics, 2013, 29, 3211-3219.	1.8	24
13	Novel Selective Allosteric and Bitopic Ligands for the S1P ₃ Receptor. ACS Chemical Biology, 2012, 7, 1975-1983.	1.6	55
14	Divergent allosteric control of the IRE1 \hat{l} \pm endoribonuclease using kinase inhibitors. Nature Chemical Biology, 2012, 8, 982-989.	3.9	175
15	Prediction of Aqueous Solubility, Vapor Pressure and Critical Micelle Concentration for Aquatic Partitioning of Perfluorinated Chemicals. Environmental Science & Environmenta	4.6	112
16	Modelling physico-chemical properties of (benzo)triazoles, and screening for environmental partitioning. Water Research, 2011, 45, 1463-1471.	5.3	31
17	Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse. Molecular Diversity, 2011, 15, 467-476.	2.1	29
18	CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals. Molecular Informatics, 2011, 30, 189-204.	1.4	32

#	Article	IF	CITATIONS
19	Are Mechanistic and Statistical QSAR Approaches Really Different? MLR Studies on 158 Cycloalkylâ€Pyranones. Molecular Informatics, 2010, 29, 511-522.	1.4	11
20	Per- and Polyfluoro Toxicity (LC ₅₀ Inhalation) Study in Rat and Mouse Using QSAR Modeling. Chemical Research in Toxicology, 2010, 23, 528-539.	1.7	35
21	A QSAR Study of HIV Protease Inhibitors Using Theoretical Descriptors. Current Computer-Aided Drug Design, 2010, 6, 269-282.	0.8	8
22	Possible allosteric interactions of monoindazole-substituted P2 cyclic urea analogues with wild-type and mutant HIV-1 protease. Journal of Computer-Aided Molecular Design, 2008, 22, 737-745.	1.3	1
23	Comparative QSAR as a Cheminformatics Tool in the Design of Dihydro-Pyranone Based HIV-1 Protease Inhibitors. Current Computer-Aided Drug Design, 2008, 4, 283-310.	0.8	6
24	From SAR to comparative QSAR: role of hydrophobicity in the design of 4-hydroxy-5,6-dihydropyran-2-ones HIV-1 protease inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 4078-4084.	1.4	25
25	A mechanistic study of 3-aminoindazole cyclic urea HIV-1 protease inhibitors using comparative QSAR. Bioorganic and Medicinal Chemistry, 2004, 12, 5819-5831.	1.4	22
26	QSAR and Molecular Modeling Studies of HIV Protease Inhibitors. , 0, , 181-271.		5