Hanmin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2446393/publications.pdf

Version: 2024-02-01

81839 74108 6,056 106 39 75 citations g-index h-index papers 114 114 114 4323 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transition-Metal-Catalyzed Direct Addition of Unactivated C–H Bonds to Polar Unsaturated Bonds. Chemical Reviews, 2015, 115, 3468-3517.	23.0	668
2	Transition-metal catalysed C–N bond activation. Chemical Society Reviews, 2016, 45, 1257-1272.	18.7	389
3	An Efficient Rh/O ₂ Catalytic System for Oxidative C–H Activation/Annulation: Evidence for Rh(I) to Rh(III) Oxidation by Molecular Oxygen. Journal of the American Chemical Society, 2013, 135, 8850-8853.	6.6	265
4	Palladium-Catalyzed Benzylic Addition of 2-Methyl Azaarenes to <i>N</i> -Sulfonyl Aldimines via Câ°'H Bond Activation. Journal of the American Chemical Society, 2010, 132, 3650-3651.	6.6	259
5	Copper-Catalyzed Oxidative Amination of Benzoxazoles via Câ^'H and Câ^'N Bond Activation: A New Strategy for Using Tertiary Amines as Nitrogen Group Sources. Organic Letters, 2011, 13, 522-525.	2.4	254
6	Palladium-Catalyzed Oxidative Carbonylation of Benzylic C–H Bonds via Nondirected C(sp ³)–H Activation. Journal of the American Chemical Society, 2012, 134, 9902-9905.	6.6	247
7	Iron-Catalyzed Direct Alkenylation of 2-Substituted Azaarenes with ⟨i⟩N⟨/i⟩-Sulfonyl Aldimines via C–H Bond Activation. Organic Letters, 2011, 13, 2580-2583.	2.4	172
8	Palladium-Catalyzed Vinylation of Aminals with Simple Alkenes: A New Strategy To Construct Allylamines. Journal of the American Chemical Society, 2012, 134, 20613-20616.	6.6	150
9	Asymmetric catalytic carbon–carbon coupling reactions via C–H bond activation. Catalysis Science and Technology, 2012, 2, 1099.	2.1	144
10	Bifunctional tertiary amine-squaramide catalyzed asymmetric catalytic 1,6-conjugate addition/aromatization of para-quinone methides with oxindoles. Chemical Communications, 2016, 52, 4183-4186.	2.2	135
11	Palladiumâ€Catalyzed Hydroaminocarbonylation of Alkenes with Amines: A Strategy to Overcome the Basicity Barrier Imparted by Aliphatic Amines. Angewandte Chemie - International Edition, 2015, 54, 7657-7661.	7.2	131
12	Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C–N Bond Activation. Journal of the American Chemical Society, 2016, 138, 4314-4317.	6.6	130
13	Rh-Catalyzed Sequential Oxidative C–H and N–N Bond Activation: Conversion of Azines into Isoquinolines with Air at Room Temperature. Organic Letters, 2014, 16, 3532-3535.	2.4	126
14	Palladium-Catalyzed Oxidative Aminocarbonylation: A New Entry to Amides via C–H Activation. Organic Letters, 2013, 15, 3370-3373.	2.4	120
15	Lewis Acidâ€Catalyzed CH Functionalization for Synthesis of Isoindolinones and Isoindolines. Advanced Synthesis and Catalysis, 2010, 352, 3195-3200.	2.1	115
16	Palladium-Catalyzed Difunctionalization of Enol Ethers to Amino Acetals with Aminals and Alcohols. Journal of the American Chemical Society, 2013, 135, 18327-18330.	6.6	102
17	Palladium-Catalyzed Formal Insertion of Carbenoids into Aminals via C–N Bond Activation. Journal of the American Chemical Society, 2015, 137, 12490-12493.	6.6	99
18	Palladiumâ€Catalyzed Insertion of an Allene into an Aminal: Aminomethylamination of Allenes by CN Bond Activation. Angewandte Chemie - International Edition, 2014, 53, 7272-7276.	7.2	93

#	Article	IF	CITATIONS
19	An Efficient Rhodium/Oxygen Catalytic System for Oxidative Heck Reaction of Indoles and Alkenes <i>via</i> CH Functionalization. Advanced Synthesis and Catalysis, 2014, 356, 1509-1515.	2.1	90
20	Palladium-catalyzed regiodivergent hydroaminocarbonylation of alkenes to primary amides with ammonium chloride. Chemical Science, 2018, 9, 380-386.	3.7	75
21	Palladium atalyzed Dearomative Cyclocarbonylation by CN Bond Activation. Angewandte Chemie - International Edition, 2015, 54, 10912-10916.	7.2	70
22	Copper-Catalyzed α-Benzylation of Enones via Radical-Triggered Oxidative Coupling of Two C–H Bonds. ACS Catalysis, 2015, 5, 2882-2885.	5.5	70
23	Rhodium-Catalyzed Enantioselective Hydrogenation of β-Phthalimide Acrylates to Synthesis of β2-Amino Acids. Organic Letters, 2006, 8, 3359-3362.	2.4	68
24	Palladium-Catalyzed Intramolecular Hydroaminocarbonylation to Lactams: Additive-Free Protocol Initiated by Palladium Hydride. ACS Catalysis, 2016, 6, 6785-6789.	5.5	68
25	Chiral Monophosphites Derived from Carbohydrate:  Conformational Effect in Catalytic Asymmetric Hydrogenation. Organic Letters, 2003, 5, 4137-4139.	2.4	64
26	Synthetic methods for 1,3-diamines. Organic and Biomolecular Chemistry, 2016, 14, 10557-10566.	1.5	64
27	A Novel Class of Pâ^'O Monophosphite Ligands Derived from d-Mannitol:  Broad Applications in Highly Enantioselective Rh-Catalyzed Hydrogenations. Journal of Organic Chemistry, 2004, 69, 2355-2361.	1.7	61
28	Palladium-Catalyzed Hydroaminocarbonylation of Alkynes with Tertiary Amines via C–N Bond Cleavage. Organic Letters, 2017, 19, 6260-6263.	2.4	59
29	An Efficient Synthesis of Chiral Diamines with Rigid Backbones: Application in Enantioselective Michael Addition of Malonates to Nitroalkenes. Organic Letters, 2009, 11, 4536-4539.	2.4	56
30	Lewis Acidâ€Catalyzed Conjugate Addition of <i>sp</i> ³ CH Bonds to Methylenemalononitriles. Advanced Synthesis and Catalysis, 2012, 354, 2146-2150.	2.1	56
31	Charge-Transfer Complex Promoted C–N Bond Activation for Ni-Catalyzed Carbonylation. Organic Letters, 2017, 19, 3520-3523.	2.4	55
32	Rhodium-Catalyzed Cyclocarbonylation of Ketimines via Câ€"H Bond Activation. Organometallics, 2016, 35, 1480-1487.	1.1	53
33	Highly Enantioselective Hydrogenation of Steric Hindrance Enones Catalyzed by Ru Complexes with Chiral Diamine and Achiral Phosphane. Organic Letters, 2014, 16, 3912-3915.	2.4	51
34	A Highly Diastereo―and Enantioselective Reaction for Constructing Functionalized Cyclohexanes: Six Contiguous Stereocenters in One Step. Angewandte Chemie - International Edition, 2012, 51, 1248-1251.	7.2	49
35	Ruthenium Catalysts Containing Rigid Chiral Diamines and Achiral Diphosphanes for Highly Enantioselective Hydrogenation of Aromatic Ketones. Chemistry - A European Journal, 2011, 17, 7760-7763.	1.7	46
36	Triple-Bond Insertion Triggers Highly Regioselective 1,4-Aminomethylamination of 1,3-Enynes with Aminals Enabled by Pd-Catalyzed C–N Bond Activation. Organic Letters, 2019, 21, 535-539.	2.4	46

#	Article	IF	Citations
37	Palladium-Catalyzed Aminomethylamination and Aromatization of Aminoalkenes with Aminals via C–N Bond Activation. Organic Letters, 2016, 18, 5736-5739.	2.4	44
38	Cooperative Catalysis with Aldehydes and Copper: Development and Application in Aerobic Oxidative CH Amination at Room Temperature. Advanced Synthesis and Catalysis, 2013, 355, 1315-1322.	2.1	43
39	Cinchona Alkaloid Catalyzed Enantioselective [4 + 2] Annulation of Allenic Esters and in Situ Generated ortho-Quinone Methides: Asymmetric Synthesis of Functionalized Chromans. Journal of Organic Chemistry, 2017, 82, 5433-5440.	1.7	42
40	Transition-metal-catalyzed reactions involving reductive elimination between dative ligands and covalent ligands. Chemical Society Reviews, 2020, 49, 1487-1516.	18.7	42
41	Transition-Metal-Catalyzed Hydroaminocarbonylations of Alkenes and Alkynes. Trends in Chemistry, 2021, 3, 218-230.	4.4	42
42	Cu-catalyzed direct C–H amination of 2-alkylazaarenes with azodicarboxylates via nucleophilic addition. Tetrahedron Letters, 2013, 54, 711-714.	0.7	41
43	Palladium-Catalyzed Ring-Closing Reaction via C–N Bond Metathesis for Rapid Construction of Saturated <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2020, 142, 18341-18345.	6.6	40
44	Palladium-catalyzed carbonylation of allylamines via C–N bond activation leading to β,γ-unsaturated amides. RSC Advances, 2014, 4, 64235-64237.	1.7	38
45	Multicomponent Reactions with Cyclic Tertiary Amines Enabled by Facile Câ^'N Bond Cleavage. Angewandte Chemie - International Edition, 2017, 56, 5101-5105.	7.2	37
46	Highly Selective Construction of Medium-Sized Lactams by Palladium-Catalyzed Intramolecular Hydroaminocarbonylation of Aminoalkynes. Organic Letters, 2017, 19, 5070-5073.	2.4	34
47	Palladium-Catalyzed Regioselective Hydroaminocarbonylation of Alkynes to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Primary Amides with Ammonium Chloride. Journal of Organic Chemistry, 2018, 83, 10134-10141.	1.7	33
48	Palladiumâ€Catalyzed Intramolecular Oxidative CH Sulfuration of Aryl Thiocarbamates. Advanced Synthesis and Catalysis, 2014, 356, 2471-2476.	2.1	32
49	Enantioselective Epoxidation of Electronâ€Deficient Alkenes Catalyzed by Manganese Complexes with Chiral N ₄ Ligands Derived from Rigid Chiral Diamines. Advanced Synthesis and Catalysis, 2017, 359, 2535-2541.	2.1	32
50	Palladium-Catalyzed Hydrocarbonylative C–N Coupling of Alkenes with Amides. Organic Letters, 2018, 20, 2208-2212.	2.4	32
51	Copper-catalyzed decarboxylative cross-coupling of cinnamic acids and ACCN via single electron transfer. Organic and Biomolecular Chemistry, 2016, 14, 2399-2402.	1.5	31
52	Palladium-Catalyzed Dehydrogenative Difunctionalization of Aminoalkenes with Aminals as Oxidants and Electrophiles. Organic Letters, 2017, 19, 4600-4603.	2.4	27
53	Stereoselective synthesis of trans \hat{l}^2 -lactams via palladium/N-heterocyclic carbene-catalyzed carbonylative [2+2] cycloaddition. Tetrahedron Letters, 2012, 53, 1613-1616.	0.7	26
54	Metal Bridging for Directing and Accelerating Electron Transfer as Exemplified by Harnessing the Reactivity of AIBN. Angewandte Chemie - International Edition, 2015, 54, 5900-5904.	7.2	25

#	Article	IF	Citations
55	Palladium-catalyzed highly regioselective hydroaminocarbonylation of aromatic alkenes to branched amides. Organic and Biomolecular Chemistry, 2017, 15, 2910-2913.	1.5	25
56	Palladium-catalyzed formal insertion of carbenoids into $\langle i \rangle N \langle i \rangle$, $\langle i \rangle O \langle i \rangle$ -aminals: direct access to \hat{l} ±-alkoxy- \hat{l} 2-amino acid esters. Chemical Communications, 2019, 55, 3947-3950.	2.2	24
57	Diboron as a reductant for nickel-catalyzed reductive coupling: rational design and mechanistic studies. Chemical Communications, 2015, 51, 1850-1853.	2.2	23
58	Palladium-Catalyzed Hydrocarbonylative Cyclization Enabled by Formal Insertion of Aromatic Câ•N Bonds into Pd–Acyl Bonds. Organic Letters, 2019, 21, 9114-9118.	2.4	22
59	Palladium-catalyzed hydroaminocarbonylation of alkenes with amines promoted by weak acid. Tetrahedron Letters, 2016, 57, 383-386.	0.7	21
60	Palladium-catalysed coupling reaction of aminals with N-sulfonyl hydrazones to give allylic sulfones. Organic Chemistry Frontiers, 2016, 3, 259-267.	2.3	21
61	Palladium-catalyzed relay hydroaminocarbonylation of alkenes with hydroxylamine hydrochloride as an ammonia equivalent. Communications Chemistry, 2019, 2, .	2.0	21
62	Palladiumâ€Catalyzed Ringâ€Forming Aminoalkenylation of Alkenes with Aldehydes Initiated by Intramolecular Aminopalladation. Angewandte Chemie - International Edition, 2017, 56, 2473-2477.	7.2	20
63	Nickelâ€Catalyzed Alkylarylation of Activated Alkenes with Benzylâ€amines via Câ^'N Bond Activation. Chemistry - A European Journal, 2018, 24, 7114-7117.	1.7	19
64	Catalytic Reactions Directed by a Structurally Well-Defined Aminomethyl Cyclopalladated Complex. Accounts of Chemical Research, 2021, 54, 4305-4318.	7.6	19
65	Palladiumâ€Catalyzed Selective CH Benzylation towards Functionalized Azoles with a Quaternary Carbon Center. Advanced Synthesis and Catalysis, 2012, 354, 1692-1700.	2.1	18
66	Decarboxylative Alkylcarboxylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acids Enabled by Copper-Catalyzed Oxidative Coupling. Organic Letters, 2015, 17, 4968-4971.	2.4	18
67	Copper-Catalyzed Oxidative Coupling of AIBN and Ketone-Derived Enoxysilanes to \hat{I}^3 -Ketonitriles. Organic Letters, 2018, 20, 4998-5001.	2.4	17
68	Lewis Acid Catalyzed Electrophilic Aminomethyloxygenative Cyclization of Alkynols with <i>N</i> , <i>O</i> -Aminals. Organic Letters, 2020, 22, 755-759.	2.4	17
69	Palladium atalyzed Carbonylative Difunctionalization of C=N Bond of Azaarenes or Imines to Quinazolinones. Chemistry - an Asian Journal, 2020, 15, 1678-1682.	1.7	17
70	A Ruthenium Catalyst with Simple Triphenylphosphane for the Enantioselective Hydrogenation of Aromatic Ketones. ChemCatChem, 2013, 5, 2253-2257.	1.8	16
71	Palladiumâ€Catalyzed Cascade Double Câ€"N Bond Activation: A New Strategy for Aminomethylation of 1,3â€Dienes with Aminals. Chinese Journal of Chemistry, 2018, 36, 929-933.	2.6	16
72	Ni-Catalyzed Dimerization and Arylation of Diarylacetylenes with Arylboronic Acids. Organic Letters, 2017, 19, 6674-6677.	2.4	15

#	Article	IF	CITATIONS
73	Copper-Catalyzed Dehydrogenative Formal $[4 + 2]$ and $[3 + 2]$ Cycloadditions of Methylnaphthalenes and Electron-Deficient Alkenes. Organic Letters, 2017, 19, 6352-6355.	2.4	14
74	Nickel-Catalyzed Benzylation of Aryl Alkenes with Benzylamines via C–N Bond Activation. Journal of Organic Chemistry, 2018, 83, 13922-13929.	1.7	14
75	Palladium-Catalyzed Chemoselective Aminomethylative Cyclization and Aromatizing Allylic Amination: Access to Functionalized Naphthalenes. Organic Letters, 2020, 22, 8962-8966.	2.4	14
76	Asymmetric Aminomethylative Etherification of Conjugated Dienes with Aliphatic Alcohols Facilitated by Hydrogen Bonding. Journal of the American Chemical Society, 2021, 143, 12467-12472.	6.6	14
77	Copperâ€Catalyzed Difunctionalization of Terminal Alkynes with Diazo Esters and Amines to Construct βâ€Enamino Esters. Advanced Synthesis and Catalysis, 2016, 358, 4075-4084.	2.1	13
78	Fe-catalyzed Fukuyama-type indole synthesis triggered by hydrogen atom transfer. Chemical Science, 2021, 12, 10501-10505.	3.7	13
79	Palladium-Catalyzed Hydrocarbonylative Cyclization of 1,5-Dienes. Organic Letters, 2019, 21, 6333-6336.	2.4	12
80	Palladium-Catalyzed Allyl–Allyl Reductive Coupling of Allylamines or Allylic Alcohols with H ₂ as Sole Reductant. Organic Letters, 2021, 23, 365-369.	2.4	12
81	Ironâ€Catalyzed Aminomethyloxygenative Cyclization of Hydroxyâ€Î±â€diazoesters with N,O â€Aminals. Chinese Journal of Chemistry, 2020, 38, 389-393.	2.6	11
82	Palladium-Catalyzed Ring-Closing Reaction for the Synthesis of Saturated <i>N</i> -Heterocycles with Aminodienes and <i>N,O</i> -Acetals. Journal of Organic Chemistry, 2021, 86, 7849-7863.	1.7	11
83	Palladium-Catalyzed Tandem Carbonylative Diels–Alder Reaction for Construction of Bridged Polycyclic Skeletons. Organic Letters, 2021, 23, 2125-2129.	2.4	10
84	Palladium-Catalyzed Direct Amination of Allylic Alcohols at Room Temperature. Synlett, 2014, 25, 2781-2786.	1.0	9
85	Silver-catalyzed nucleophilic substitution of aminals with ethyl diazoacetate: a new pathway to \hat{l}^2 -amino- \hat{l}^2 -diazoesters. Organic and Biomolecular Chemistry, 2016, 14, 10572-10575.	1.5	9
86	Catalyst-Free Aminomethylamination of <i>>o</i> -Hydroxystyrenes with Aminals to 1,3-Diamines. Organic Letters, 2018, 20, 3601-3604.	2.4	9
87	Catalytic Claisen Rearrangement by Intercepting Ketenimines with Propargylic Alcohols: A Strategy to Generate and Transform Ketenimines from Radicals. Organic Letters, 2020, 22, 6794-6798.	2.4	9
88	Carbonylative cycloaddition between two different alkenes enabled by reactive directing groups: expedited construction of bridged polycyclic skeletons. Chemical Communications, 2020, 56, 12198-12201.	2.2	9
89	Catalytic Benzylation Reactions: From Câ€"H Bond Activation to Câ€"N Bond Activation. Chinese Journal of Chemistry, 2021, 39, 1070-1078.	2.6	9
90	Palladium-Catalyzed Aminomethylation and Cyclization of Enynol to O-Heterocycle Confined 1,3-Dienes. Organic Letters, 2021, 23, 3891-3896.	2.4	9

#	Article	IF	Citations
91	Highly regioselective and diastereodivergent aminomethylative annulation of dienyl alcohols enabled by a hydrogen-bonding assisting effect. Chemical Science, 2022, 13, 2317-2323.	3.7	8
92	Palladiumâ€Catalyzed Aminomethylation of Nitrodienes and Dienones via Double Câ€"N Bond Activation. Chinese Journal of Chemistry, 2021, 39, 566-570.	2.6	7
93	Palladium atalyzed Ringâ€Forming Aminoalkenylation of Alkenes with Aldehydes Initiated by Intramolecular Aminopalladation. Angewandte Chemie, 2017, 129, 2513-2517.	1.6	7
94	Enantioselective ring-closing aminomethylamination of aminodienes enabled by modified Trost ligands. Chem Catalysis, 2022, 2, 2034-2048.	2.9	7
95	Diastereo- and enantioselective conjugate addition of \hat{l} ±-keto esters to nitroalkenes: Complete switch in the enantioselectivity by tuning the metal center or rigidity of the ligand. Chinese Journal of Catalysis, 2015, 36, 57-67.	6.9	6
96	Silver-Catalyzed Olefination of Acetals and Ketals with Diazoesters to \hat{I}^2 -Alkoxyacrylates. Organic Letters, 2018, 20, 7090-7094.	2.4	6
97	Multicomponent Reactions with Cyclic Tertiary Amines Enabled by Facile Câ^'N Bond Cleavage. Angewandte Chemie, 2017, 129, 5183-5187.	1.6	5
98	Carbonylative cycloaddition of alkenes and imines to \hat{l}^2 -lactams enabled by resolving the acid-base paradox. Chem Catalysis, 2022, 2, 1467-1479.	2.9	5
99	Brønsted Acid Catalyzed Cyclization of Aminodiazoesters with Aldehydes to 3-Carboxylate- <i>N</i> -Heterocycles. Organic Letters, 2020, 22, 6031-6034.	2.4	4
100	Palladium-catalyzed dearomative cyclocarbonylation of allyl alcohol for the synthesis of quinolizinones. Organic and Biomolecular Chemistry, 2021, 19, 1274-1277.	1.5	4
101	Palladium-catalyzed tandem hydrocarbonylative cycloaddition for expedient construction of bridged lactones. Organic Chemistry Frontiers, 2022, 9, 715-719.	2.3	4
102	Silver-catalyzed chemodivergent assembly of aminomethylated isochromenes and naphthols. Chemical Communications, 2022, 58, 3969-3972.	2.2	4
103	Palladium-Catalyzed Tandem Hydrocarbonylative Lactamization and Cycloaddition Reaction for the Construction of Bridged Polycyclic Lactams. Organic Letters, 2022, 24, 147-151.	2.4	4
104	Unlocking a self-catalytic cycle in a copper-catalyzed aerobic oxidative coupling/cyclization reaction. IScience, 2022, 25, 103906.	1.9	3
105	Palladium-Catalyzed Aminomethylative Oppolzer-Type Cyclization of Enynes: Access to Aminomethylated Benzofulvenes. Organic Letters, 2021, , .	2.4	2
106	Pd-Catalyzed carbonylative lactonization of 2-halidearomatic aldehydes with H $<$ sub $>$ 2 $<$ /sub $>$ 0 as a nucleophile. Organic and Biomolecular Chemistry, 2022, , .	1.5	2