
Yanxiu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2446332/publications.pdf Version: 2024-02-01

Υλινιιίι

#	Article	IF	CITATIONS
1	Water-Stable CsPbBr ₃ /Cs ₄ PbBr ₆ Nanocrystals with a Mixed Fluoropolymer Shell for Optical Temperature Sensing. ACS Applied Nano Materials, 2022, 5, 5025-5034.	2.4	8
2	Multidentate Ligand Polyethylenimine Enables Bright Color-Saturated Blue Light-Emitting Diodes Based on CsPbBr ₃ Nanoplatelets. ACS Energy Letters, 2021, 6, 477-484.	8.8	65
3	Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Advanced Energy Materials, 2021, 11, 2003457.	10.2	57
4	Strongly Luminescent Dion–Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular Proton Donors Chloroform and Dichloromethane. Advanced Functional Materials, 2021, 31, 2102182.	7.8	24
5	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
6	Composite Nanospheres Comprising Luminescent Carbon Dots Incorporated into a Polyhedral Oligomeric Silsesquioxane Matrix. Journal of Physical Chemistry C, 2021, 125, 15094-15102.	1.5	4
7	Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and optoelectronic applications. Materials Today, 2020, 32, 204-221.	8.3	114
8	Cdâ€Rich Alloyed CsPb _{1â€} <i>_x</i> Cd <i>_x</i> Br ₃ Perovskite Nanorods with Tunable Blue Emission and Fermi Levels Fabricated through Crystal Phase Engineering. Advanced Science, 2020, 7, 2000930.	5.6	52
9	Composite Films of CsPbBr3 Perovskite Nanocrystals in a Hydrophobic Fluoropolymer for Temperature Imaging in Digital Microfluidics. ACS Applied Materials & Interfaces, 2020, 12, 19805-19812.	4.0	23
10	Stable Luminescent Composite Microspheres Based on Porous Silica with Embedded CsPbBr ₃ Perovskite Nanocrystals. ChemNanoMat, 2020, 6, 1080-1085.	1.5	12
11	Spontaneous Crystallization of Perovskite Nanocrystals in Nonpolar Organic Solvents: A Versatile Approach for their Shapeâ€Controlled Synthesis. Angewandte Chemie - International Edition, 2019, 58, 16558-16562.	7.2	96
12	Spontane Kristallisation von Perowskitâ€Nanokristallen in unpolaren organischen Lösungsmitteln: Ein vielseitiges Konzept für deren morphologiekontrollierende Synthese. Angewandte Chemie, 2019, 131, 16710-16715.	1.6	5
13	Using Polar Alcohols for the Direct Synthesis of Cesium Lead Halide Perovskite Nanorods with Anisotropic Emission. ACS Nano, 2019, 13, 8237-8245.	7.3	84
14	Chemically Synthesized Carbon Nanorods with Dual Polarized Emission. ACS Nano, 2019, 13, 12024-12031.	7.3	31
15	Ligand-assisted reduction and reprecipitation synthesis of highly luminescent metal nanoclusters. Nanoscale Advances, 2019, 1, 834-839.	2.2	11
16	A specific electrochemiluminescence sensor for selective and ultra-sensitive mercury(<scp>ii</scp>) detection based on dithiothreitol functionalized copper nanocluster/carbon nitride nanocomposites. Analyst, The, 2019, 144, 4425-4431.	1.7	20
17	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Đown Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.	1.6	12
18	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Đown Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5833-5837.	7.2	109

Yanxiu Li

#	ARTICLE	IF	CITATIONS
19	Waterâ€Soluble Biocompatible Copolymer Hypromellose Grafted Chitosan Able to Load Exogenous Agents and Copper Nanoclusters with Aggregationâ€Induced Emission. Advanced Functional Materials, 2018, 28, 1802848.	7.8	48
20	Reversible transformation between CsPbBr ₃ and Cs ₄ PbBr ₆ nanocrystals. CrystEngComm, 2018, 20, 4900-4904.	1.3	48
21	Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems. Drug Delivery, 2017, 24, 707-719.	2.5	37
22	Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. Journal of Materials Chemistry B, 2017, 5, 6835-6846.	2.9	43
23	Self-assembly of multifunctional integrated nanoparticles loaded with a methotrexate–phospholipid complex: combining simplicity and efficacy in both targeting and anticancer effects. RSC Advances, 2016, 6, 86717-86727.	1.7	11
24	Drug/Dye-Loaded, Multifunctional PEG–Chitosan–Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging. ACS Applied Materials & Interfaces, 2015, 7, 11908-11920.	4.0	119
25	Tumor-targeted co-delivery of mitomycin C and 10-hydroxycamptothecin via micellar nanocarriers for enhanced anticancer efficacy. RSC Advances, 2015, 5, 23022-23033.	1.7	9
26	Self-Assembled Nanoparticles Based on Amphiphilic Anticancer Drug–Phospholipid Complex for Targeted Drug Delivery and Intracellular Dual-Controlled Release. ACS Applied Materials & Interfaces, 2015, 7, 17573-17581.	4.0	66
27	Validation of a dual role of methotrexate-based chitosan nanoparticles in vivo. RSC Advances, 2015, 5, 41393-41400.	1.7	3
28	Bacillus-Shape Design of Polymer Based Drug Delivery Systems with Janus-Faced Function for Synergistic Targeted Drug Delivery and More Effective Cancer Therapy. Molecular Pharmaceutics, 2015, 12, 1318-1327.	2.3	28
29	Self-Targeted, Shape-Assisted, and Controlled-Release Self-Delivery Nanodrug for Synergistic Targeting/Anticancer Effect of Cytoplasm and Nucleus of Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 25553-25559.	4.0	59
30	Self-targeted, bacillus-shaped, and controlled-release methotrexate prodrug polymeric nanoparticles for intratumoral administration with improved therapeutic efficacy in tumor-bearing mice. Journal of Materials Chemistry B, 2015, 3, 7707-7717.	2.9	22
31	Development of Both Methotrexate and Mitomycin C Loaded PEGylated Chitosan Nanoparticles for Targeted Drug Codelivery and Synergistic Anticancer Effect. ACS Applied Materials & Interfaces, 2014, 6, 11413-11423.	4.0	77
32	Mitomycin C-Soybean Phosphatidylcholine Complex-Loaded Self-Assembled PEG-Lipid-PLA Hybrid Nanoparticles for Targeted Drug Delivery and Dual-Controlled Drug Release. Molecular Pharmaceutics, 2014, 11, 2915-2927.	2.3	64