
## Anais J Orsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/244547/publications.pdf Version: 2024-02-01



ANAIS | ODSI

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change, 2016, 6, 917-926.                                                                                                 | 8.1  | 253       |
| 2  | Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015)<br>and identification of dominant processes. Cryosphere, 2019, 13, 281-296.                                          | 1.5  | 171       |
| 3  | Antarctic climate variability on regional and continental scales over the last 2000Âyears. Climate of the Past, 2017, 13, 1609-1634.                                                                                   | 1.3  | 145       |
| 4  | A global database of Holocene paleotemperature records. Scientific Data, 2020, 7, 115.                                                                                                                                 | 2.4  | 112       |
| 5  | Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event.<br>Nature, 2017, 548, 443-446.                                                                                           | 13.7 | 86        |
| 6  | lsotopic constraint on the twentieth-century increase in tropospheric ozone. Nature, 2019, 570, 224-227.                                                                                                               | 13.7 | 80        |
| 7  | Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West<br>Antarctic Ice Sheet (WAIS) Divide. Geophysical Research Letters, 2012, 39, .                                        | 1.5  | 75        |
| 8  | Spatial gradients of temperature, accumulation and Î <sup>18</sup> O-ice in<br>Greenland over a series of Dansgaard–Oeschger events. Climate of the Past, 2013, 9, 1029-1051.                                          | 1.3  | 67        |
| 9  | lsotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica. Cryosphere, 2016, 10, 1647-1663.                                                | 1.5  | 53        |
| 10 | Firn Model Intercomparison Experiment (FirnMICE). Journal of Glaciology, 2017, 63, 401-422.                                                                                                                            | 1.1  | 52        |
| 11 | The Iso2k database: a global compilation of<br>paleo- <i>l`</i> <sup>18</sup> O and<br><i>l`</i> <sup>2</sup> H records to aid<br>understanding of Common Era climate. Earth System Science Data. 2020, 12, 2261-2288. | 3.7  | 46        |
| 12 | The Ross Sea Dipole – temperature, snow accumulation and sea ice variability in the Ross Sea region,<br>Antarctica, over the past 2700Âyears. Climate of the Past, 2018, 14, 193-214.                                  | 1.3  | 44        |
| 13 | Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions. Cryosphere, 2015, 9, 1481-1504.                        | 1.5  | 41        |
| 14 | The recent warming trend in North Greenland. Geophysical Research Letters, 2017, 44, 6235-6243.                                                                                                                        | 1.5  | 40        |
| 15 | Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of<br>Geophysical Research D: Atmospheres, 2015, 120, 2558-2574.                                                            | 1.2  | 39        |
| 16 | Core handling and processing for the WAIS Divide ice-core project. Annals of Glaciology, 2014, 55, 15-26.                                                                                                              | 2.8  | 34        |
| 17 | How warm was Greenland during the last interglacial period?. Climate of the Past, 2016, 12, 1933-1948.                                                                                                                 | 1.3  | 30        |
| 18 | Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities. Climate of the Past, 2017, 13, 833-853.                                                     | 1.3  | 28        |

ANAIS J ORSI

| #  | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: observations and simulations from the ECHAM5-wiso atmospheric general circulation model. Climate of the Past, 2018, 14, 923-946.                                                                            | 1.3 | 26        |
| 20 | Experimental determination and theoretical framework of kinetic fractionation at the water<br>vapour–ice interface at low temperature. Geochimica Et Cosmochimica Acta, 2016, 174, 54-69.                                                                                                | 1.6 | 21        |
| 21 | Assessing the robustness of Antarctic temperature reconstructions over the past 2Âmillennia using pseudoproxy and data assimilation experiments. Climate of the Past, 2019, 15, 661-684.                                                                                                 | 1.3 | 21        |
| 22 | Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica.<br>Cryosphere, 2017, 11, 2727-2741.                                                                                                                                                | 1.5 | 21        |
| 23 | The heat is on in Antarctica. Nature Geoscience, 2013, 6, 87-88.                                                                                                                                                                                                                         | 5.4 | 18        |
| 24 | Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica Et Cosmochimica Acta, 2016, 177, 62-77.                                                                                                      | 1.6 | 18        |
| 25 | Magnitude and temporal evolution of Dansgaard–Oeschger event 8 abrupt temperature change<br>inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and<br>Planetary Science Letters, 2014, 395, 81-90.                                        | 1.8 | 17        |
| 26 | Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data.<br>Comptes Rendus - Geoscience, 2017, 349, 139-150.                                                                                                                               | 0.4 | 17        |
| 27 | Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology, 2015, 61, 585-594.                                                                                                                                                            | 1.1 | 15        |
| 28 | Snowfall and Water Stable Isotope Variability in East Antarctica Controlled by Warm Synoptic Events.<br>Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032863.                                                                                                        | 1.2 | 15        |
| 29 | Surface Temperature in Twentieth Century at the Styx Glacier, Northern Victoria Land, Antarctica,<br>From Borehole Thermometry. Geophysical Research Letters, 2018, 45, 9834-9842.                                                                                                       | 1.5 | 14        |
| 30 | Coastal water vapor isotopic composition driven by katabatic wind variability in summer at Dumont<br>d'Urville, coastal East Antarctica. Earth and Planetary Science Letters, 2019, 514, 37-47.                                                                                          | 1.8 | 14        |
| 31 | High-precision 14C measurements demonstrate production of in situ cosmogenic 14CH4 and rapid loss<br>of in situ cosmogenic 14CO in shallow Greenland firn. Earth and Planetary Science Letters, 2013, 365,<br>190-197.<br>New technique for high-precision, simultaneous measurements of | 1.8 | 12        |
| 32 | CH <sub>4</sub> , N <sub>2</sub> O and<br>CO <sub>2</sub> concentrations; isotopic and elemental ratios of<br>N <sub>2</sub> , O <sub>2</sub> and Ar; and<br>total air content in ice cores by wet extraction. Atmospheric Measurement Techniques, 2020, 13,                             | 1.2 | 12        |
| 33 | 6703-6731.<br>Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West<br>Antarctica. Cryosphere, 2018, 12, 325-341.                                                                                                                            | 1.5 | 10        |
| 34 | An extension of the TALDICE ice core age scale reaching back to MIS 10.1. Quaternary Science Reviews, 2021, 266, 107078.                                                                                                                                                                 | 1.4 | 10        |
| 35 | A 4.5 Year‣ong Record of Svalbard Water Vapor Isotopic Composition Documents Winter Air Mass<br>Origin. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032681.                                                                                                        | 1.2 | 6         |
| 36 | Unveiling the anatomy of Termination 3 using water and air isotopes in the Dome C ice core, East<br>Antarctica. Quaternary Science Reviews, 2019, 211, 156-165.                                                                                                                          | 1.4 | 5         |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comparison of observed borehole temperatures in Antarctica with simulations using a forward model driven by climate model outputs covering the past millennium. Climate of the Past, 2020, 16, 1411-1428. | 1.3 | 1         |