List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2444876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese-Mediated C–H Bond Activation of Fluorinated Aromatics and the <i>ortho</i> -Fluorine Effect: Kinetic Analysis by <i>In Situ</i> Infrared Spectroscopic Analysis and Time-Resolved Methods. ACS Catalysis, 2022, 12, 1532-1544.	11.2	13
2	Tuning Photoinduced Electron Transfer in POMâ€Bodipy Hybrids by Controlling the Environment: Experiment and Theory. Angewandte Chemie - International Edition, 2021, 60, 6518-6525.	13.8	19
3	Light―and Manganeseâ€Initiated Borylation of Aryl Diazonium Salts: Mechanistic Insight on the Ultrafast Time‣cale Revealed by Timeâ€Resolved Spectroscopic Analysis. Chemistry - A European Journal, 2021, 27, 3979-3985.	3.3	13
4	Direct Observation of the Microscopic Reverse of the Ubiquitous Concerted Metalation Deprotonation Step in C–H Bond Activation Catalysis. Journal of the American Chemical Society, 2021, 143, 1356-1364.	13.7	28
5	Singlet and Triplet Contributions to the Excited-State Activities of Dihydrophenazine, Phenoxazine, and Phenothiazine Organocatalysts Used in Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 3613-3627.	13.7	39
6	ldentification of the vibrational marker of tyrosine cation radical using ultrafast transient infrared spectroscopy of flavoprotein systems. Photochemical and Photobiological Sciences, 2021, 20, 369-378.	2.9	12
7	Tuning Photoinduced Electron Transfer in POMâ€Bodipy Hybrids by Controlling the Environment: Experiment and Theory. Angewandte Chemie, 2021, 133, 6592-6599.	2.0	4
8	Structure-Dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine, and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization. Journal of Physical Chemistry B, 2021, 125, 7840-7854.	2.6	22
9	Adenine Radical Cation Formation by a Ligand-Centered Excited State of an Intercalated Chromium Polypyridyl Complex Leads to Enhanced DNA Photo-oxidation. Journal of the American Chemical Society, 2021, 143, 14766-14779.	13.7	18
10	Direct Observation of Reactive Intermediates by Time-Resolved Spectroscopy Unravels the Mechanism of a Radical-Induced 1,2-Metalate Rearrangement. Journal of the American Chemical Society, 2021, 143, 17191-17199.	13.7	20
11	Unraveling the Mechanism of a LOV Domain Optogenetic Sensor: A Glutamine Lever Induces Unfolding of the Jα Helix. ACS Chemical Biology, 2020, 15, 2752-2765.	3.4	29
12	Time-Resolved Temperature-Jump Infrared Spectroscopy at a High Repetition Rate. Applied Spectroscopy, 2020, 74, 720-727.	2.2	8
13	Time-resolved infra-red spectroscopy reveals competitive water and dinitrogen coordination to a manganese(<scp>i</scp>) carbonyl complex. Dalton Transactions, 2020, 49, 5463-5470.	3.3	10
14	Mapping the multi-step mechanism of a photoredox catalyzed atom-transfer radical polymerization reaction by direct observation of the reactive intermediates. Chemical Science, 2020, 11, 4475-4481.	7.4	28
15	Monitoring Base-Specific Dynamics during Melting of DNA–Ligand Complexes Using Temperature-Jump Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry B, 2019, 123, 6188-6199.	2.6	17
16	Picosecond to millisecond tracking of a photocatalytic decarboxylation reaction provides direct mechanistic insights. Nature Communications, 2019, 10, 5152.	12.8	24
17	Photochemical or electrochemical bond breaking – exploring the chemistry of (μ ₂ -alkyne)Co ₂ (CO) ₆ complexes using time-resolved infrared spectroscopy, spectro-electrochemical and density functional methods. Dalton Transactions, 2019, 48, 14642-14652.	3.3	4
18	Manganese Carbonyl Compounds Reveal Ultrafast Metal–Solvent Interactions. Organometallics, 2019, 38, 2391-2401.	2.3	20

#	Article	IF	CITATIONS
19	Insight into the mechanism of CO-release from trypto-CORM using ultra-fast spectroscopy and computational chemistry. Dalton Transactions, 2019, 48, 16426-16436.	3.3	13
20	Investigating the Role of the Organic Cation in Formamidinium Lead Iodide Perovskite Using Ultrafast Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 895-901.	4.6	72
21	Mapping out the key carbon–carbon bond-forming steps in Mn-catalysed C–H functionalization. Nature Catalysis, 2018, 1, 830-840.	34.4	61
22	Vibrational Relaxation and Redistribution Dynamics in Ruthenium(II) Polypyridyl-Based Charge-Transfer Excited States: AÂCombined Ultrafast Electronic and Infrared Absorption Study. Journal of Physical Chemistry A, 2018, 122, 7941-7953.	2.5	20
23	Rapid photoinduced charge injection into covalent polyoxometalate–bodipy conjugates. Chemical Science, 2018, 9, 5578-5584.	7.4	43
24	Charge-transfer dynamics at the dye–semiconductor interface of photocathodes for solar energy applications. Faraday Discussions, 2017, 198, 449-461.	3.2	9
25	Investigating interfacial electron transfer in dye-sensitized NiO using vibrational spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 7877-7885.	2.8	23
26	Photoaquation Mechanism of Hexacyanoferrate(II) Ions: Ultrafast 2D UV and Transient Visible and IR Spectroscopies. Journal of the American Chemical Society, 2017, 139, 7335-7347.	13.7	43
27	Inosine Can Increase DNA′s Susceptibility to Photoâ€oxidation by a RullComplex due to Structural Change in the Minor Groove. Chemistry - A European Journal, 2017, 23, 10344-10351.	3.3	18
28	Photochemistry of framework-supported M(diimine)(CO) ₃ X complexes in three-dimensional lithium carboxylate metal–organic frameworks: monitoring the effect of framework cations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160033.	3.4	10
29	Next generation ultrafast time-resolved infrared spectroscopy at the central laser facility. , 2017, , .		0
30	Can aliphatic anchoring groups be utilised with dyes for p-type dye sensitized solar cells?. Dalton Transactions, 2016, 45, 7708-7719.	3.3	24
31	Probing Photochemically and Thermally Induced Isomerization Reactions in $\hat{I}\pm$ -Pyrone. Journal of Physical Chemistry A, 2016, 120, 7249-7254.	2.5	5
32	A 100 kHz Time-Resolved Multiple-Probe Femtosecond to Second Infrared Absorption Spectrometer. Applied Spectroscopy, 2016, 70, 645-653.	2.2	80
33	Mechanism of the AppA _{BLUF} Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 p <i>K</i> Sub>a on the Forward and Reverse Ground-State Reactions. Journal of the American Chemical Society, 2016, 138, 926-935.	13.7	26
34	Contrasting ring-opening propensities in UV-excited α-pyrone and coumarin. Physical Chemistry Chemical Physics, 2016, 18, 2629-2638.	2.8	32
35	Reaction Dynamics of CN Radicals in Acetonitrile Solutions. Journal of Physical Chemistry A, 2015, 119, 12924-12934.	2.5	8
36	Enantiomeric Conformation Controls Rate and Yield of Photoinduced Electron Transfer in DNA Sensitized by Ru(II) Dipyridophenazine Complexes. Journal of Physical Chemistry Letters, 2015, 6, 734-738.	4.6	29

#	Article	IF	CITATIONS
37	UV-Induced Isomerization Dynamics of <i>N</i> -Methyl-2-pyridone in Solution. Journal of Physical Chemistry A, 2015, 119, 88-94.	2.5	10
38	Monitoring guanine photo-oxidation by enantiomerically resolved Ru(<scp>ii</scp>) dipyridophenazine complexes using inosine-substituted oligonucleotides. Faraday Discussions, 2015, 185, 455-469.	3.2	12
39	Calculating singlet excited states: Comparison with fast time-resolved infrared spectroscopy of coumarins. Journal of Chemical Physics, 2015, 142, 154119.	3.0	14
40	Electronic Excited States of Tungsten(0) Arylisocyanides. Inorganic Chemistry, 2015, 54, 8518-8528.	4.0	34
41	Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution. Journal of Physical Chemistry A, 2015, 119, 12090-12101.	2.5	6
42	Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres. Dalton Transactions, 2014, 43, 17797-17805.	3.3	6
43	Dual Charge-Transfer in Rhenium(I) Thioether Substituted Hexaazanaphthalene Complexes. Inorganic Chemistry, 2014, 53, 13049-13060.	4.0	19
44	Comprehensive Analysis of the Green-to-Blue Photoconversion of Full-Length Cyanobacteriochrome Tlr0924. Biophysical Journal, 2014, 107, 2195-2203.	0.5	15
45	Long-lived excited states in i-motif DNA studied by picosecond time-resolved IR spectroscopy. Chemical Communications, 2014, 50, 2990-2992.	4.1	30
46	Tracking a Paternò–Büchi Reaction in Real Time Using Transient Electronic and Vibrational Spectroscopies. Journal of Physical Chemistry A, 2014, 118, 10240-10245.	2.5	8
47	Dynamics of photodissociation of XeF ₂ in organic solvents. Physical Chemistry Chemical Physics, 2014, 16, 16095-16102.	2.8	9
48	Transient electronic and vibrational absorption studies of the photo-Claisen and photo-Fries rearrangements. Chemical Science, 2014, 5, 707-714.	7.4	11
49	Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium <i>Acinetobacter baumannii</i> . Journal of Physical Chemistry Letters, 2014, 5, 220-224.	4.6	25
50	Red-Absorbing Cationic Acceptor Dyes for Photocathodes in Tandem Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16536-16546.	3.1	51
51	Controlled CO release using photochemical, thermal and electrochemical approaches from the amino carbene complex [(CO)5CrC(NC4H8)CH3]. Physical Chemistry Chemical Physics, 2014, 16, 21230-21233.	2.8	10
52	Efficient Quenching of TGA-Capped CdTe Quantum Dot Emission by a Surface-Coordinated Europium(III) Cyclen Complex. Inorganic Chemistry, 2013, 52, 4133-4135.	4.0	21
53	Material Profiling for Photocrystallography: Relating Single-Crystal Photophysical and Structural Properties of Luminescent Bis-Cyclometalated Iridium-Based Complexes. Crystal Growth and Design, 2013, 13, 1826-1837.	3.0	13
54	Proteins in Action: Femtosecond to Millisecond Structural Dynamics of a Photoactive Flavoprotein. Journal of the American Chemical Society, 2013, 135, 16168-16174.	13.7	65

#	Article	IF	CITATIONS
55	Tryptophan-Accelerated Electron Flow Across a Protein–Protein Interface. Journal of the American Chemical Society, 2013, 135, 15515-15525.	13.7	43
56	Photoisomerization and Photoinduced Reactions in Liquid CCl ₄ and CHCl ₃ . Journal of Physical Chemistry A, 2013, 117, 13388-13398.	2.5	18
57	Comparing molecular photofragmentation dynamics in the gas and liquid phases. Physical Chemistry Chemical Physics, 2013, 15, 6567.	2.8	68
58	Vibrationally resolved dynamics of the reaction of Cl atoms with 2,3-dimethylbut-2-ene in chlorinated solvents. Chemical Science, 2013, 4, 226-237.	7.4	18
59	Waveguide-enhanced 2D-IR spectroscopy in the gas phase. Optics Letters, 2013, 38, 3596.	3.3	9
60	Ultrafast IR spectroscopy of polymeric cytosine nucleic acids reveal the long-lived species is due to a localised state. Physical Chemistry Chemical Physics, 2012, 14, 6307.	2.8	13
61	Photophysical studies of CdTe quantum dots in the presence of a zinc cationic porphyrin. Dalton Transactions, 2012, 41, 13159.	3.3	27
62	Photofragmentation Dynamics in Solution Probed by Transient IR Absorption Spectroscopy: πσ*-Mediated Bond Cleavage in <i>p</i> -Methylthiophenol and <i>p</i> -Methylthioanisole. Journal of Physical Chemistry Letters, 2012, 3, 3715-3720.	4.6	20
63	Vibrational Assignment of the Ultrafast Infrared Spectrum of the Photoactivatable Flavoprotein AppA. Journal of Physical Chemistry B, 2012, 116, 10722-10729.	2.6	21
64	Photochemistry of (η6-Anisole)Cr(CO)3and (η6-Thioanisole)Cr(CO)3: Evidence for a Photoinduced Haptotropic Shift of the Thioanisole Ligand, a Picosecond Time-Resolved Infrared Spectroscopy and Density Functional Theory Investigation. Journal of Physical Chemistry A, 2012, 116, 962-969.	2.5	10
65	Vibrationally Quantum-State–Specific Reaction Dynamics of H Atom Abstraction by CN Radical in Solution. Science, 2011, 331, 1423-1426.	12.6	76
66	Charge Photoinjection in Intercalated and Covalently Bound [Re(CO) ₃ (dppz)(py)] ⁺ –DNA Constructs Monitored by Time-Resolved Visible and Infrared Spectroscopy. Journal of the American Chemical Society, 2011, 133, 13718-13730.	13.7	51
67	Ultrafast Infrared Spectroscopy of an Isotope-Labeled Photoactivatable Flavoprotein. Biochemistry, 2011, 50, 1321-1328.	2.5	36
68	Photochemistry of ($\hat{I} < \sup > 6 < \sup > -Arene)Cr(CO) < \sup > 3 < \sup > (Arene = Methylbenzoate, Naphthalene,) Tj ETQ$	q0 0 0 rgE 2.5	T /Overlock 19
	Chemistry A, 2011, 115, 2985-2993.		
69	A Comparative Picosecond Transient Infrared Study of 1-Methylcytosine and 5ä€2-dCMP That Sheds Further Light on the Excited States of Cytosine Derivatives. Journal of the American Chemical Society, 2011, 133, 4212-4215.	13.7	48
70	Ultrafast Excited-State Dynamics of Rhenium(I) Photosensitizers [Re(Cl)(CO) ₃ (N,N)] and [Re(imidazole)(CO) ₃ (N,N)] ⁺ : Diimine Effects. Inorganic Chemistry, 2011, 50, 2932-2943.	4.0	171
71	Photoexcitation of the Blue Light Using FAD Photoreceptor AppA Results in Ultrafast Changes to the Protein Matrix. Journal of the American Chemical Society, 2011, 133, 16893-16900.	13.7	51
72	Phototriggering Electron Flow through Re ^I â€modified <i>Pseudomonas aeruginosa</i> Azurins. Chemistry - A European Journal, 2011, 17, 5350-5361.	3.3	51

IAN P CLARK

#	Article	lF	CITATIONS
73	Vibrationally quantum-state-specific dynamics of the reactions of CN radicals with organic molecules in solution. Journal of Chemical Physics, 2011, 134, 244503.	3.0	21
74	Investigating the vibrational dynamics of a 17eâ^'metallocarbonyl intermediate using ultrafast two dimensional infrared spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 1051-1063.	2.8	29
75	Excited State Dynamics and Activation Parameters of Remarkably Slow Photoinduced CO Loss from (η ⁶ -Benzene)Cr(CO) ₃ in <i>n</i> Heptane Solution: A DFT and Picosecond-Time-Resolved Infrared Study. Journal of Physical Chemistry A, 2010, 114, 11425-11431.	2.5	16
76	Temporal and Spatial Resolution in Transmission Raman Spectroscopy. Applied Spectroscopy, 2010, 64, 52-60.	2.2	29
77	Ultra: A Unique Instrument for Time-Resolved Spectroscopy. Applied Spectroscopy, 2010, 64, 1311-1319.	2.2	173
78	Mid-Infrared Picosecond Pumpâ^'Dumpâ^'Probe and Pumpâ^'Repump-Probe Experiments to Resolve a Ground-State Intermediate in Cyanobacterial Phytochrome Cph1. Journal of Physical Chemistry B, 2009, 113, 16354-16364.	2.6	27
79	Determination of the triplet state energies of a series of conjugated porphyrin oligomers. Photochemical and Photobiological Sciences, 2007, 6, 675.	2.9	44
80	Laser-muon spin spectroscopy in liquids—A technique to study the excited state chemistry of transients. Physical Chemistry Chemical Physics, 2007, 9, 353-359.	2.8	16
81	Ground and Excited State Resonance Raman Spectra of an Azacrown-Substituted [(bpy)Re(CO)3L]+Complex:Â Characterization of Excited States, Determination of Structure and Bonding, and Observation of Metal Cation Release from the Azacrown. Journal of Physical Chemistry A 2007 111 50-58	2.5	21
82	Noninvasive Raman Spectroscopy of Human Tissue in vivo. Applied Spectroscopy, 2006, 60, 758-763.	2.2	210
83	Formation of singlet oxygen from solutions of vitamin E. Free Radical Research, 2006, 40, 333-338.	3.3	25
84	A simple setup for the study of microvolume frozen samples using Raman spectroscopy. Review of Scientific Instruments, 2005, 76, 104301.	1.3	2
85	A new polymorph of terpyridine: variable temperature X-ray diffraction studies and solid state photophysical properties. CrystEngComm, 2005, 7, 269.	2.6	42
86	Rhenium-to-Benzoylpyridine and Rhenium-to-Bipyridine MLCT Excited States offac-[Re(Cl)(4-benzoylpyridine)2(CO)3] andfac-[Re(4-benzoylpyridine)(CO)3(bpy)]+:Â A Time-Resolved Spectroscopic and Spectroelectrochemical Study. Inorganic Chemistry, 2004, 43, 4523-4530.	4.0	43
87	Investigation of multiphoton-induced fluorescence from solutions of 5-hydroxytryptophan. Photochemical and Photobiological Sciences, 2003, 2, 157.	2.9	11
88	Mechanism of the Photochemical Ligand Substitution Reactions of fac-[Re(bpy)(CO)3(PR3)]+ Complexes and the Properties of Their Triplet Ligand-Field Excited States. Journal of the American Chemical Society, 2002, 124, 11448-11455.	13.7	149
89	Steady state and time-resolved IR spectroscopy of the native and unfolded states of bovine ubiquitin: protein stability and temperature-jump kinetic measurements of protein folding at low pH. Chemical Communications, 2000, , 1493-1494.	4.1	15
90	Photoinduced Radical Formation from the Complexes [Re(R)(CO)3(4,4â€~-Me2-bpy)] (R = CH3, CD3, Et,iPr,) Tj	ETQq0 0 0	rgBT /Overlo

American Chemical Society, 1998, 120, 10871-10879.

#	Article	IF	CITATIONS
91	Infrared Spectra of the Excited States of Coordination Compounds Containing CO Groups: Bandwidths in Polar and Nonpolar Solvents. Journal of Physical Chemistry A, 1997, 101, 8367-8370.	2.5	11
92	Infrared rigidochromism: a new effect in the IR spectra of the excited states of coordination compounds. Chemical Communications, 1996, 1587.	4.1	20
93	Inorganometallic Complexes [Ru(E)(Ea€²)(CO) ₂ (<1>1)Pra€ DAB)] (Ei±¾Cl, Me, ShPh _{3<td>3.3</td><td>q1 1 0.784. 53</td>}	3.3	q1 1 0.784. 53
	[Ru(SnPh ₃) ₂ (CO) ₂ (<i>i(<i>i)]. Chemistry - A European Journ</i></i>		