Andrew P Gleave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2444741/publications.pdf Version: 2024-02-01

ANDREW P CLEAVE

#	Article	IF	CITATIONS
1	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	21.4	1,891
2	Construct design for efficient, effective and high-throughput gene silencing in plants. Plant Journal, 2001, 27, 581-590.	5.7	1,368
3	Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 2005, 1, 13.	4.3	1,290
4	A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 1992, 20, 1203-1207.	3.9	946
5	The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 Gene Affects Branch Production and Plays a Role in Leaf Senescence, Root Growth, and Flower Development. Plant Cell, 2005, 17, 746-759.	6.6	375
6	A Genomics Approach Reveals That Aroma Production in Apple Is Controlled by Ethylene Predominantly at the Final Step in Each Biosynthetic Pathway. Plant Physiology, 2007, 144, 1899-1912.	4.8	317
7	Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease. PLoS Pathogens, 2013, 9, e1003503.	4.7	247
8	Analyses of Expressed Sequence Tags from Apple. Plant Physiology, 2006, 141, 147-166.	4.8	246
9	Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009, 60, 765-778.	4.8	245
10	Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology, 2008, 8, 16.	3.6	189
11	Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Molecular Biology, 1999, 40, 223-235.	3.9	179
12	Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics, 2008, 9, 351.	2.8	178
13	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	2.8	167
14	Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. Journal of Experimental Botany, 2013, 64, 5049-5063.	4.8	124
15	Mutagenesis of kiwifruit <i><scp>CENTRORADIALIS</scp></i> â€like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal, 2019, 17, 869-880.	8.3	106
16	A <i>micro<scp>RNA</scp></i> allele that emerged prior to apple domestication may underlie fruit size evolution. Plant Journal, 2015, 84, 417-427.	5.7	95
17	Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Science, 1996, 113, 175-183.	3.6	73
18	Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genetics and Genomes, 2008, 4, 343-358.	1.6	69

ANDREW P GLEAVE

#	Article	IF	CITATIONS
19	Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis. Mycological Research, 2003, 107, 803-810.	2.5	65
20	Post-transcriptional silencing of chalcone synthase in petunia using a geminivirus-based episomal vector. Plant Journal, 1998, 15, 593-604.	5.7	56
21	A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds. Journal of Experimental Botany, 2009, 60, 3835-3848.	4.8	56
22	Expressed sequence tags and proteomics of antennae from the tortricid moth, <i>Epiphyas postvittana</i> . Insect Molecular Biology, 2008, 17, 361-373.	2.0	55
23	Apple, from genome to breeding. Tree Genetics and Genomes, 2012, 8, 509-529.	1.6	49
24	Expressed sequence tags from the midgut of <i>Epiphyas postvittana</i> (Walker) (Lepidoptera:) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
25	Transformation of Actinidia eriantha: A potential species for functional genomics studies in Actinidia. Plant Cell Reports, 2006, 25, 425-431.	5.6	41
26	Cloning and sequencing of a gene encoding the 69-kDa extracellular chitinase ofJanthinobacterium lividum. FEMS Microbiology Letters, 1995, 131, 279-288.	1.8	40
27	How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signaling and Behavior, 2016, 11, e1156833.	2.4	39
28	Title is missing!. Molecular Breeding, 1998, 4, 459-472.	2.1	27
29	Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites. Plant Cell Reports, 2013, 32, 703-714.	5.6	26
30	Ectopic expression of the <i><scp>PISTILLATA</scp></i> homologous <i>Md<scp>PI</scp></i> inhibits fruit tissue growth and changes fruit shape in apple. Plant Direct, 2018, 2, e00051.	1.9	24
31	microRNA172 targets <i>APETALA2</i> to regulate flavonoid biosynthesis in apple (<i>Malus) Tj ETQq1 1 0.7843</i>	814 rgBT /(6.9	Overlock 10

32	Transposon insertions regulate genomeâ€wide alleleâ€specific expression and underpin flower colour variations in apple (<i>Malus</i> spp.). Plant Biotechnology Journal, 2022, 20, 1285-1297.	8.3	21
33	GUS expression patterns from a tobacco yellow dwarf virus-based episomal vector. Plant Cell Reports, 1998, 17, 631-639.	5.6	20
34	Minor modifications to the cry1Ac9 nucleotide sequence are sufficient to generate transgenic plants resistant to Phthorimaea operculella. Annals of Applied Biology, 2001, 138, 281-292.	2.5	18
35	Efficient transformation of Actinidia arguta by reducing the strength of basal salts in the medium to alleviate callus browning. Plant Biotechnology Reports, 2010, 4, 129-138.	1.5	18
36	Exogenous cytokinin application to Actinidia chinensis var. deliciosa â€~Hayward' fruit promotes fruit expansion through water uptake. Horticulture Research, 2017, 4, 17043.	6.3	18

3

#	Article	IF	CITATIONS
37	Common Variants of the Plant microRNA-168a Exhibit Differing Silencing Efficacy for Human Low-Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1). MicroRNA (Shariqah, United Arab) Tj ETQq1 1 C	0.78442814	rgB T &Overloc
38	Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor Horticulture Research, 2022, 9, .	6.3	18
39	Serpins in fruit and vegetative tissues of apple (Malus domestica): expression of four serpins with distinct reactive centres and characterisation of a major inhibitory seed form, MdZ1b. Functional Plant Biology, 2005, 32, 517.	2.1	10
40	Apple Functional Genomics. , 2009, , 121-142.		3