
Mark A Sussman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2444406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac Stem Cell and Myocyte Aging, Heart Failure, and Insulin-Like Growth Factor-1 Overexpression. Circulation Research, 2004, 94, 514-524.	2.0	527
2	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
3	Animal Models of Heart Failure. Circulation Research, 2012, 111, 131-150.	2.0	378
4	Enhanced Effect of Combining Human Cardiac Stem Cells and Bone Marrow Mesenchymal Stem Cells to Reduce Infarct Size and to Restore Cardiac Function After Myocardial Infarction. Circulation, 2013, 127, 213-223.	1.6	375
5	The Rac and Rho Hall of Fame. Circulation Research, 2006, 98, 730-742.	2.0	311
6	Bone marrow cells adopt the cardiomyogenic fate <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17783-17788.	3.3	292
7	Endoplasmic Reticulum Stress Gene Induction and Protection From Ischemia/Reperfusion Injury in the Hearts of Transgenic Mice With a Tamoxifen-Regulated Form of ATF6. Circulation Research, 2006, 98, 1186-1193.	2.0	282
8	Activation of the Unfolded Protein Response in Infarcted Mouse Heart and Hypoxic Cultured Cardiac Myocytes. Circulation Research, 2006, 99, 275-282.	2.0	267
9	Myocardial Akt Activation and Gender. Circulation Research, 2001, 88, 1020-1027.	2.0	258
10	Pim-1 regulates cardiomyocyte survival downstream of Akt. Nature Medicine, 2007, 13, 1467-1475.	15.2	228
11	Decreased SLIM1 Expression and Increased Gelsolin Expression in Failing Human Hearts Measured by High-Density Oligonucleotide Arrays. Circulation, 2000, 102, 3046-3052.	1.6	222
12	Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes and Development, 2013, 27, 1365-1377.	2.7	221
13	Enhancement of Myocardial Regeneration Through Genetic Engineering of Cardiac Progenitor Cells Expressing Pim-1 Kinase. Circulation, 2009, 120, 2077-2087.	1.6	201
14	Nuclear Targeting of Akt Enhances Kinase Activity and Survival of Cardiomyocytes. Circulation Research, 2004, 94, 884-891.	2.0	197
15	BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy, 2019, 15, 1182-1198.	4.3	197
16	Myocardial AKT: The Omnipresent Nexus. Physiological Reviews, 2011, 91, 1023-1070.	13.1	196
17	Juvenile Exposure to Anthracyclines Impairs Cardiac Progenitor Cell Function and Vascularization Resulting in Greater Susceptibility to Stress-Induced Myocardial Injury in Adult Mice. Circulation, 2010, 121, 675-683.	1.6	176
18	Activation of Notch-Mediated Protective Signaling in the Myocardium. Circulation Research, 2008, 102, 1025-1035.	2.0	172

#	Article	IF	CITATIONS
19	Alterations at the Intercalated Disk Associated with the Absence of Muscle Lim Protein. Journal of Cell Biology, 2001, 153, 763-772.	2.3	167
20	Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. Journal of Clinical Investigation, 2000, 105, 875-886.	3.9	163
21	Role of Rac1 GTPase Activation in Atrial Fibrillation. Journal of the American College of Cardiology, 2007, 50, 359-367.	1.2	159
22	Signal Transducers and Activators of Transcription-3/Pim1 Axis Plays a Critical Role in the Pathogenesis of Human Pulmonary Arterial Hypertension. Circulation, 2011, 123, 1205-1215.	1.6	156
23	Mesencephalic Astrocyte-Derived Neurotrophic Factor Is an Ischemia-Inducible Secreted Endoplasmic Reticulum Stress Response Protein in the Heart. Circulation Research, 2008, 103, 1249-1258.	2.0	149
24	Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. Journal of Clinical Investigation, 2005, 115, 2716-2730.	3.9	145
25	Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation. Journal of the American College of Cardiology, 2010, 55, 469-480.	1.2	143
26	Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2010, 48, 1329-1334.	0.9	140
27	Human Cardiac Progenitor Cells Engineered With Pim-I Kinase Enhance Myocardial Repair. Journal of the American College of Cardiology, 2012, 60, 1278-1287.	1.2	140
28	Mechanisms of Cardiac Repair and Regeneration. Circulation Research, 2018, 122, 1151-1163.	2.0	136
29	Cardiac-Specific IGF-1 Expression Attenuates Dilated Cardiomyopathy in Tropomodulin-Overexpressing Transgenic Mice. Circulation Research, 2002, 90, 641-648.	2.0	134
30	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
31	Evolution of the c-kit-Positive Cell Response to Pathological Challenge in the Myocardium. Stem Cells, 2008, 26, 1315-1324.	1.4	128
32	Vascular Endothelial Growth Factor Regulates Focal Adhesion Assembly in Human Brain Microvascular Endothelial Cells through Activation of the Focal Adhesion Kinase and Related Adhesion Focal Tyrosine Kinase. Journal of Biological Chemistry, 2003, 278, 36661-36668.	1.6	127
33	Nuclear Targeting of Akt Enhances Ventricular Function and Myocyte Contractility. Circulation Research, 2005, 97, 1332-1341.	2.0	119
34	PHLPP-1 Negatively Regulates Akt Activity and Survival in the Heart. Circulation Research, 2010, 107, 476-484.	2.0	115
35	Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase. Circulation Research, 2013, 113, 1169-1179.	2.0	110
36	Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5969-5974.	3.3	109

#	Article	IF	CITATIONS
37	Altered Expression of Tropomodulin in Cardiomyocytes Disrupts the Sarcomeric Structure of Myofibrils. Circulation Research, 1998, 82, 94-105.	2.0	106
38	Myocardial Aging and Senescence: Where Have the Stem Cells Gone?. Annual Review of Physiology, 2004, 66, 29-48.	5.6	106
39	Fibronectin Is Essential for Reparative Cardiac Progenitor Cell Response After Myocardial Infarction. Circulation Research, 2013, 113, 115-125.	2.0	105
40	Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence. Nature Reviews Cardiology, 2018, 15, 523-542.	6.1	103
41	Empowering Adult Stem Cells for Myocardial Regeneration. Circulation Research, 2011, 109, 1415-1428.	2.0	102
42	Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes. Circulation Research, 2010, 106, 1265-1274.	2.0	100
43	Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12661-12666.	3.3	100
44	Akt Promotes Increased Cardiomyocyte Cycling and Expansion of the Cardiac Progenitor Cell Population. Circulation Research, 2006, 99, 381-388.	2.0	97
45	Mechanistic Target of Rapamycin Complex 2 Protects the Heart From Ischemic Damage. Circulation, 2013, 128, 2132-2144.	1.6	97
46	Dance Band on theTitanic. Circulation Research, 2002, 91, 888-898.	2.0	96
47	Nuclear targeting of Akt antagonizes aspects of cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11946-11951.	3.3	96
48	Cardiac Progenitor Cell Cycling Stimulated by Pim-1 Kinase. Circulation Research, 2010, 106, 891-901.	2.0	91
49	Coordination of Growth and Endoplasmic Reticulum Stress Signaling by Regulator of Calcineurin 1 (RCAN1), a Novel ATF6-inducible Gene. Journal of Biological Chemistry, 2008, 283, 14012-14021.	1.6	90
50	Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circulation Research, 2015, 117, 536-546.	2.0	89
51	Phosphorylation of Elk-1 by MEK/ERK Pathway is Necessary for c-fos Gene Activation During Cardiac Myocyte Hypertrophy. Journal of Molecular and Cellular Cardiology, 2000, 32, 1447-1457.	0.9	84
52	Roles for Endoplasmic Reticulum–Associated Degradation and the Novel Endoplasmic Reticulum Stress Response Gene Derlin-3 in the Ischemic Heart. Circulation Research, 2010, 106, 307-316.	2.0	83
53	Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. American Journal of Physiology - Cell Physiology, 2003, 284, C562-C570.	2.1	81
54	Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. European Heart Journal, 2011, 32, 2179-2188.	1.0	79

#	Article	IF	CITATIONS
55	Cardiac Stem Cell Hybrids Enhance Myocardial Repair. Circulation Research, 2015, 117, 695-706.	2.0	77
56	Sca-1 Knockout Impairs Myocardial and Cardiac Progenitor Cell Function. Circulation Research, 2012, 111, 750-760.	2.0	74
57	A Novel Population of Myeloid Cells Responding to Coxsackievirus Infection Assists in the Dissemination of Virus within the Neonatal CNS. Journal of Neuroscience, 2010, 30, 8676-8691.	1.7	72
58	Pim1 Kinase Overexpression Enhances ckit+ Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine. Journal of the American College of Cardiology, 2016, 68, 2454-2464.	1.2	69
59	Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene, 2004, 23, 1275-1282.	2.6	68
60	PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Molecular Medicine, 2014, 6, 57-65.	3.3	68
61	Nucleostemin Rejuvenates CardiacÂProgenitor Cells and AntagonizesÂMyocardial Aging. Journal of the American College of Cardiology, 2015, 65, 133-147.	1.2	67
62	Molecular Genetic Advances in Cardiovascular Medicine. Circulation, 2004, 109, 2832-2838.	1.6	65
63	Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6145-6150.	3.3	62
64	Pim-1 kinase antagonizes aspects of myocardial hypertrophy and compensation to pathological pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13889-13894.	3.3	61
65	RAGE-Dependent Activation of the Oncoprotein Pim1 Plays a Critical Role in Systemic Vascular Remodeling Processes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2114-2124.	1.1	61
66	Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovascular Research, 2008, 82, 272-285.	1.8	60
67	Overexpression of SERCA2b in the Heart Leads to an Increase in Sarcoplasmic Reticulum Calcium Transport Function and Increased Cardiac Contractility. Journal of Biological Chemistry, 2000, 275, 24722-24727.	1.6	59
68	β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation. Circulation Research, 2013, 112, 476-486.	2.0	59
69	Bones of contention: Marrow-derived cells in myocardial regeneration. Journal of Molecular and Cellular Cardiology, 2008, 44, 950-953.	0.9	57
70	Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. Journal of Cell Science, 2012, 125, 287-294.	1.2	55
71	Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). Journal of Molecular and Cellular Cardiology, 2019, 127, 154-164.	0.9	53
72	Cardiomyocyte Apoptosis Triggered by RAFTK/pyk2 via Src Kinase Is Antagonized by Paxillin. Journal of Biological Chemistry, 2004, 279, 53516-53523.	1.6	52

#	Article	IF	CITATIONS
73	Phosphorylation of Focal Adhesion Kinase (FAK) on Ser732 Is Induced by Rho-dependent Kinase and Is Essential for Proline-rich Tyrosine Kinase-2–mediated Phosphorylation of FAK on Tyr407 in Response to Vascular Endothelial Growth Factor. Molecular Biology of the Cell, 2006, 17, 3508-3520.	0.9	52
74	Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circulation Research, 2017, 121, 113-124.	2.0	52
75	Pathogenesis of Dilated Cardiomyopathy. American Journal of Pathology, 1999, 155, 2101-2113.	1.9	51
76	Empowering Adult Stem Cells for Myocardial Regeneration V2.0. Circulation Research, 2016, 118, 867-880.	2.0	51
77	Notch signaling and cardiac repair. Journal of Molecular and Cellular Cardiology, 2012, 52, 1226-1232.	0.9	50
78	Fibronectin contributes to pathological cardiac hypertrophy but not physiological growth. Basic Research in Cardiology, 2013, 108, 375.	2.5	50
79	Metabolic Dysfunction Consistent With Premature Aging Results From Deletion of Pim Kinases. Circulation Research, 2014, 115, 376-387.	2.0	49
80	Embryonic Stem Cell–Derived Cardiac Myocytes Are Not Ready for Human Trials. Circulation Research, 2014, 115, 335-338.	2.0	47
81	Regulation of Cardiac Hypertrophic Signaling by Prolyl Isomerase Pin1. Circulation Research, 2013, 112, 1244-1252.	2.0	46
82	Tropomodulin1 Is Required in the Heart but Not the Yolk Sac for Mouse Embryonic Development. Circulation Research, 2008, 103, 1241-1248.	2.0	45
83	Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte. Expert Review of Cardiovascular Therapy, 2009, 7, 929-938.	0.6	45
84	Preservation of Myocardial Structure Is Enhanced by Pim-1 Engineering of Bone Marrow Cells. Circulation Research, 2012, 111, 77-86.	2.0	45
85	Cardiac stem cell genetic engineering using the αMHC promoter. Regenerative Medicine, 2009, 4, 823-833.	0.8	44
86	Cloning of Tropomodulin cDNA and Localization of Gene Transcripts during Mouse Embryogenesis. Developmental Biology, 1995, 167, 317-328.	0.9	41
87	Cardiac aging — Getting to the stem of the problem. Journal of Molecular and Cellular Cardiology, 2015, 83, 32-36.	0.9	41
88	Hypoxia Prevents Mitochondrial Dysfunction and Senescence in Human c-Kit+ Cardiac Progenitor Cells. Stem Cells, 2019, 37, 555-567.	1.4	41
89	Hearts and bones. Nature, 2001, 410, 640-641.	13.7	40
90	Myocardial Induction of Nucleostemin in Response to Postnatal Growth and Pathological Challenge. Circulation Research, 2008, 103, 89-97.	2.0	40

#	Article	IF	CITATIONS
91	Failure of cell cleavage induces senescence in tetraploid primary cells. Molecular Biology of the Cell, 2014, 25, 3105-3118.	0.9	40
92	Calcium dynamics in the failing heart: restoration by \hat{I}^2 -adrenergic receptor blockade. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H305-H315.	1.5	39
93	Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Research in Cardiology, 2015, 110, 29.	2.5	39
94	Activation of pyk2/Related Focal Adhesion Tyrosine Kinase and Focal Adhesion Kinase in Cardiac Remodeling. Journal of Biological Chemistry, 2002, 277, 45203-45210.	1.6	38
95	Stressing on the nucleolus in cardiovascular disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 798-801.	1.8	38
96	S100A4 protects the myocardium against ischemic stress. Journal of Molecular and Cellular Cardiology, 2016, 100, 54-63.	0.9	38
97	Integrin shedding as a mechanism of cellular adaptation during cardiac growth. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H2227-H2234.	1.5	35
98	Increased Mitotic Rate Coincident with Transient Telomere Lengthening Resulting from Pimâ€1 Overexpression in Cardiac Progenitor Cells. Stem Cells, 2012, 30, 2512-2522.	1.4	35
99	Neural Stem Cell Depletion and CNS Developmental Defects After Enteroviral Infection. American Journal of Pathology, 2012, 180, 1107-1120.	1.9	35
100	Control of histone <scp>H3</scp> phosphorylation by <scp>CaMKII</scp> δ in response to haemodynamic cardiac stress. Journal of Pathology, 2015, 235, 606-618.	2.1	35
101	Sarcoplasmic Reticulum Ca 2+ ATPase (SERCA) 1a Structurally Substitutes for SERCA2a in the Cardiac Sarcoplasmic Reticulum and Increases Cardiac Ca 2+ Handling Capacity. Circulation Research, 2001, 89, 160-167.	2.0	34
102	"AKTâ€ing Lessons for Stem Cells: Regulation of Cardiac Myocyte and Progenitor Cell Proliferation. Trends in Cardiovascular Medicine, 2007, 17, 235-240.	2.3	34
103	Different types of cultured human adult Cardiac Progenitor Cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 2014, 18, 2147-2151.	1.6	34
104	Cardiac Progenitor Cell Commitment Is Inhibited by Nuclear Akt Expression. Circulation Research, 2011, 108, 960-970.	2.0	33
105	Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circulation Research, 2018, 123, 57-72.	2.0	32
106	Asymmetric Chromatid Segregation in Cardiac Progenitor Cells Is Enhanced by Pim-1 Kinase. Circulation Research, 2012, 110, 1169-1173.	2.0	31
107	In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Scientific Reports, 2018, 8, 12060.	1.6	30
108	Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations. Trends in Endocrinology and Metabolism, 2019, 30, 557-567.	3.1	30

#	Article	IF	CITATIONS
109	Involvement of Phosphorylation in Doxorubicin-Mediated Myofibril Degeneration. Circulation Research, 1997, 80, 52-61.	2.0	30
110	P2Y ₂ Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling. Circulation Research, 2017, 121, 1224-1236.	2.0	29
111	Pim-1 kinase inhibits pathological injury by promoting cardioprotective signaling. Journal of Molecular and Cellular Cardiology, 2011, 51, 554-558.	0.9	28
112	Chasing c-Kit through the heart: Taking a broader view. Pharmacological Research, 2018, 127, 110-115.	3.1	28
113	Enhancing myocardial repair with CardioClusters. Nature Communications, 2020, 11, 3955.	5.8	27
114	Differential Regulation of Cellular Senescence and Differentiation by Prolyl Isomerase Pin1 in Cardiac Progenitor Cells. Journal of Biological Chemistry, 2014, 289, 5348-5356.	1.6	26
115	Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells. Journal of Biological Chemistry, 2015, 290, 13935-13947.	1.6	26
116	Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Function and Reduces Survival. Journal of Biological Chemistry, 2015, 290, 22061-22075.	1.6	24
117	Evaluation of Left Ventricular Function in Cardiomyopathic Mice by Tissue Doppler and Color M-Mode Doppler Echocardiography. Echocardiography, 2005, 22, 245-253.	0.3	23
118	Enhancement Strategies for Cardiac Regenerative Cell Therapy. Circulation Research, 2018, 123, 177-187.	2.0	23
119	CENP-A is essential for cardiac progenitor cell proliferation. Cell Cycle, 2014, 13, 739-748.	1.3	22
120	Myocardial subproteomic analysis of a constitutively active Rac1-expressing transgenic mouse with lethal myocardial hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2325-H2333.	1.5	21
121	The Heart: Mostly Postmitotic or Mostly Premitotic? Myocyte Cell Cycle, Senescence, and Quiescence. Canadian Journal of Cardiology, 2014, 30, 1270-1278.	0.8	21
122	An Intact Intermediate Filament Network Is Required for Collateral Sprouting of Small Diameter Nerve Fibers. Journal of Neuroscience, 2003, 23, 9312-9319.	1.7	20
123	Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 kinase. Expert Review of Cardiovascular Therapy, 2013, 11, 949-957.	0.6	20
124	Making it stick: chasing the optimal stem cells for cardiac regeneration. Expert Review of Cardiovascular Therapy, 2014, 12, 1275-1288.	0.6	20
125	Cardiac interstitial tetraploid cells can escape replicative senescence in rodents but not large mammals. Communications Biology, 2019, 2, 205.	2.0	19
126	Duchenne muscular dystrophy (DMD) cardiomyocyte-secreted exosomes promote the pathogenesis of DMD-associated cardiomyopathy. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	19

#	Article	IF	CITATIONS
127	Cardioprotective stimuli mediate phosphoinositide 3-kinase and phosphoinositide dependent kinase 1 nuclear accumulation in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2009, 47, 96-103.	0.9	18
128	Cardiac Hegemony of Senescence. Current Translational Geriatrics and Experimental Gerontology Reports, 2013, 2, 247-254.	0.7	18
129	Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering, 2021, 5, 880-896.	11.6	18
130	When the Thyroid Speaks, the Heart Listens. Circulation Research, 2001, 89, 557-559.	2.0	17
131	Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. Journal of Biological Chemistry, 2015, 290, 25411-25426.	1.6	17
132	Adult human cardiac stem cell supplementation effectively increases contractile function and maturation in human engineered cardiac tissues. Stem Cell Research and Therapy, 2019, 10, 373.	2.4	17
133	mTOR/PRAS40 interaction: Hypertrophy or proliferation. Cell Cycle, 2013, 12, 3579-3580.	1.3	16
134	Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs. Cellular Signalling, 2016, 28, 871-879.	1.7	15
135	Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. Stem Cells, 2018, 36, 868-880.	1.4	15
136	Rejuvenating the senescent heart. Current Opinion in Cardiology, 2015, 30, 235-239.	0.8	14
137	Myocardial Regeneration for Humans ― Modifying Biology and Manipulating Evolution ―. Circulation Journal, 2017, 81, 142-148.	0.7	14
138	The Impact of Juvenile Coxsackievirus Infection on Cardiac Progenitor Cells and Postnatal Heart Development. PLoS Pathogens, 2014, 10, e1004249.	2.1	13
139	Personalizing cardiac regenerative therapy: At the heart of Pim1 kinase. Pharmacological Research, 2016, 103, 13-16.	3.1	13
140	PIM1 Promotes Survival of Cardiomyocytes by Upregulating c-Kit Protein Expression. Cells, 2020, 9, 2001.	1.8	13
141	Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGFÎ ² signalling. Cardiovascular Research, 2021, 117, 201-211.	1.8	13
142	PIM1-minicircle as a therapeutic treatment for myocardial infarction. PLoS ONE, 2017, 12, e0173963.	1.1	13
143	Cardiac progenitor cells engineered with Pim-1 (CPCeP) develop cardiac phenotypic electrophysiological properties as they are co-cultured with neonatal myocytes. Journal of Molecular and Cellular Cardiology, 2012, 53, 695-706.	0.9	12
144	Cardiac Progenitor Cells Engineered With βARKct Have Enhanced β-Adrenergic Tolerance. Molecular Therapy, 2014, 22, 178-185.	3.7	12

#	Article	IF	CITATIONS
145	Pin1: A molecular orchestrator in the heart. Trends in Cardiovascular Medicine, 2014, 24, 256-262.	2.3	12
146	Deletion of low molecular weight protein tyrosine phosphatase (<i>Acp1</i>) protects against stressâ€induced cardiomyopathy. Journal of Pathology, 2015, 237, 482-494.	2.1	12
147	Hypertrophic defect unmasked by calcineurin expression in asymptomatic tropomodulin overexpressing transgenic mice. Cardiovascular Research, 2000, 46, 90-101.	1.8	11
148	Cardiac regenerative therapy: Many paths to repair. Trends in Cardiovascular Medicine, 2020, 30, 338-343.	2.3	11
149	Cardiac nonmyocyte subpopulations: a secular congregation. Regenerative Medicine, 2019, 14, 489-494.	0.8	8
150	Isolation and preparation of single mouse cardiomyocytes for confocal microscopy. Cytotechnology, 1997, 19, 83-90.	0.7	7
151	ICER-Capades. Circulation Research, 2003, 93, 6-8.	2.0	7
152	Intracellular Ca2+ measurements in live cells by rapid line scan confocal microscopy: simplified calibration methodology. Cytotechnology, 2004, 25, 123-133.	0.7	7
153	Cardiac tissue engineering therapeutic products to enhance myocardial contractility. Journal of Muscle Research and Cell Motility, 2020, 41, 363-373.	0.9	7
154	Cardiac Hypertrophy Served With Protein Kinase CÎ μ . Circulation Research, 2005, 96, 711-713.	2.0	6
155	Myocardial Isl + land. Circulation Research, 2012, 110, 1267-1269.	2.0	6
156	Predicting the Future With Stem Cells. Circulation, 2014, 129, 136-138.	1.6	6
157	Peptidylâ€Prolyl Isomerase 1 Regulates Ca 2+ Handling by Modulating Sarco(Endo)Plasmic Reticulum Calcium ATPase and Na 2+ /Ca 2+ Exchanger 1 Protein Levels and Function. Journal of the American Heart Association, 2017, 6, .	1.6	6
158	Human CardioChimeras: Creation of a Novel "Nextâ€Generation―Cardiac Cell. Journal of the American Heart Association, 2020, 9, e013452.	1.6	6
159	Cellular Indigestion: Chaperones Head to the Cytoskeleton. Journal of Molecular and Cellular Cardiology, 2002, 34, 83-85.	0.9	5
160	Title is missing!. Molecular and Cellular Biochemistry, 2003, 251, 145-151.	1.4	5
161	Impaired Intracellular Ca2+Dynamics in Live Cardiomyocytes Revealed by Rapid Line Scan Confocal Microscopy. Microscopy and Microanalysis, 2005, 11, 235-243.	0.2	5
162	Circulating Around the Tissue. Circulation Research, 2015, 116, 563-565.	2.0	5

#	Article	IF	CITATIONS
163	Eat, breathe, ROS: controlling stem cell fate through metabolism. Expert Review of Cardiovascular Therapy, 2017, 15, 345-356.	0.6	5
164	Mechanobiology of Erythrocytes from Adult Mice Homozygous for a Targeted Disruption of the E-Tmod Gene at Exon 1. Cellular and Molecular Bioengineering, 2011, 4, 637-647.	1.0	4
165	Empowering human cardiac progenitor cells by P2Y ₁₄ nucleotide receptor overexpression. Journal of Physiology, 2017, 595, 7135-7148.	1.3	4
166	Proteomic analysis of Rac1 transgenic mice displaying dilated cardiomyopathy reveals an increase in creatine kinase M-chain protein abundance. , 2003, , 145-151.		4
167	Cardiovascular consequences of vaping. Current Opinion in Cardiology, 2022, Publish Ahead of Print,	0.8	4
168	Showing up Isn't Enough for Vascularization. Circulation Research, 2008, 103, 1200-1201.	2.0	3
169	Response to Letter Regarding Article, "Embryonic Stem Cell–Derived Cardiac Myocytes Are Not Ready for Human Trials― Circulation Research, 2014, 115, e30-1.	2.0	3
170	Synthetic MSC?. Circulation Research, 2017, 120, 1694-1695.	2.0	3
171	Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells. Gene Therapy, 2019, 26, 324-337.	2.3	3
172	VAPIng into ARDS: Acute Respiratory Distress Syndrome and Cardiopulmonary Failure. , 2022, 232, 108006.		3
173	Proteomic analysis of Rac1 transgenic mice displaying dilated cardiomyopathy reveals an increase in creatine kinase M-chain protein abundance. Molecular and Cellular Biochemistry, 2003, 251, 145-51.	1.4	3
174	Fundamentals of vaping-associated pulmonary injury leading to severe respiratory distress. Life Science Alliance, 2022, 5, e202101246.	1.3	3
175	Cause ofÂdeath: A"broken―MEKK?. Journal of Molecular and Cellular Cardiology, 2006, 40, 593-596.	0.9	2
176	Developing Hearts Need Their SPEG. Circulation, 2009, 119, 213-214.	1.6	2
177	Editorial commentary: Mitochondrial autophagy in cardiac aging is all fluxed up. Trends in Cardiovascular Medicine, 2018, 28, 261-262.	2.3	2
178	Adaptation within embryonic and neonatal heart environment reveals alternative fates for adult c-kit+ cardiac interstitial cells. Stem Cells Translational Medicine, 2020, 9, 620-635.	1.6	2
179	Atrial myxoma: the cardiac chameleon. European Heart Journal, 2020, 41, 4346-4348.	1.0	2
180	Intracellular Ca2+ Measurements in Live Cells by Rapid Line Scan Confocal Microscopy: Simplified Calibration Methodology. Microscopy and Microanalysis, 2004, 10, 1390-1391.	0.2	1

#	Article	IF	CITATIONS
181	Myocardial Infarct Scar. Journal of the American College of Cardiology, 2015, 65, 2067-2069.	1.2	1
182	Cardiac Stem Cells. Journal of the American College of Cardiology, 2017, 70, 742-744.	1.2	1
183	Cardiac progenitor cell ion currents: revealing a little more on the lesser known. Journal of Physiology, 2018, 596, 2271-2272.	1.3	1
184	Transcribing the heart: faithfully interpreting cardiac transcriptional insights. Regenerative Medicine, 2019, 14, 805-810.	0.8	1
185	Blood speaks: Personalised medicine profiling for heart failure patients. EBioMedicine, 2020, 58, 102900.	2.7	1
186	Hiding in plain sight: an encapsulated approach to cardiac cell therapy. Cardiovascular Research, 2021, 117, 648-650.	1.8	1
187	Transcriptional features of biological age maintained in human cultured cardiac interstitial cells. Genomics, 2021, 113, 3705-3717.	1.3	1
188	And Now for Something Completely Different. Circulation Research, 2010, 107, 820-821.	2.0	0
189	Curiosity Killed the Cat and Found New Myocytes. Circulation Research, 2011, 108, 1158-1159.	2.0	0
190	PrP., 2012, , 1488-1488.		0
191	Inject Me Once and Inject Me Twice. Then Inject Me Once Again. Circulation Research, 2016, 119, 580-581.	2.0	0
192	Impact of Telomere Shortening with Age in Stem Cell Therapy. , 2016, , 49-58.		0
193	A Matter of Opinion. Circulation Research, 2017, 120, 36-38.	2.0	0
194	Expression of Tropomodulin1 (Tmod1) in the Heart Rescues Embryonic Lethality of Tmod1 Null Mice and Results in a Mild Hemolytic Anemia Due to Absence of Tmod1 in Red Blood Cells Blood, 2005, 106, 807-807.	0.6	0
195	Pim-1. , 2018, , 4012-4016.		0
196	Transient reprogramming primes the heart for repair. , 2022, 2, .		0
197	â€~Youthful' phenotype of c-Kit+ cardiac fibroblasts. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	0