Robert S Paton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2444369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins. Communications Chemistry, 2022, 5, .	2.0	5
2	[18F]Difluorocarbene for positron emission tomography. Nature, 2022, 606, 102-108.	13.7	30
3	Asymmetric Azidation under Hydrogen Bonding Phase-Transfer Catalysis: A Combined Experimental and Computational Study. Journal of the American Chemical Society, 2022, 144, 4572-4584.	6.6	13
4	Homologation of Electron-Rich Benzyl Bromide Derivatives via Diazo C–C Bond Insertion. Journal of the American Chemical Society, 2022, 144, 86-92.	6.6	13
5	Mechanistic Studies Yield Improved Protocols for Base-Catalyzed Anti-Markovnikov Alcohol Addition Reactions. Journal of the American Chemical Society, 2022, 144, 9586-9596.	6.6	6
6	Expanding chemical space by para-Câ^'H arylation of arenes. Nature Communications, 2022, 13, .	5.8	17
7	Elucidating the chemical pathways responsible for the sooting tendency of 1 and 2-phenylethanol. Proceedings of the Combustion Institute, 2021, 38, 1327-1334.	2.4	7
8	Real-time prediction of ¹ H and ¹³ C chemical shifts with DFT accuracy using a 3D graph neural network. Chemical Science, 2021, 12, 12012-12026.	3.7	50
9	Asymmetric Total Synthesis and Determination of the Absolute Configuration of (+)-Srilankenyne via Sequence-Sensitive Halogenations Guided by Conformational Analysis. Organic Letters, 2021, 23, 1321-1326.	2.4	5
10	Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties. Accounts of Chemical Research, 2021, 54, 827-836.	7.6	47
11	Mechanistic investigation of Rh(i)-catalysed asymmetric Suzuki–Miyaura coupling with racemic allyl halides. Nature Catalysis, 2021, 4, 284-292.	16.1	18
12	Phosphorus-mediated sp2–sp3 couplings for C–H fluoroalkylation of azines. Nature, 2021, 594, 217-222.	13.7	84
13	Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. Journal of Medicinal Chemistry, 2021, 64, 10102-10123.	2.9	17
14	Reactions of NO ₃ with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction. Atmospheric Chemistry and Physics, 2021, 21, 13537-13551.	1.9	7
15	A quantitative metric for organic radical stability and persistence using thermodynamic and kinetic features. Chemical Science, 2021, 12, 13158-13166.	3.7	30
16	Unconventional Reactivity of Ethynylbenziodoxolone Reagents and Thiols: Scope and Mechanism. Chemistry - A European Journal, 2020, 26, 2386-2394.	1.7	28
17	Alkyne Linchpin Strategy for Drug:Pharmacophore Conjugation: Experimental and Computational Realization of a <i>Meta</i> -Selective Inverse Sonogashira Coupling. Journal of the American Chemical Society, 2020, 142, 3762-3774.	6.6	111
18	Effects of substituents X and Y on the NMR chemical shifts of 2-(4-X phenyl)-5-Y pyrimidines. Journal of Molecular Structure, 2020, 1204, 127489.	1.8	6

#	Article	IF	CITATIONS
19	Quantum chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell molecules. Scientific Data, 2020, 7, 244.	2.4	49
20	BIMPâ€Catalyzed 1,3â€Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angewandte Chemie, 2020, 132, 17570-17575.	1.6	6
21	Visible‣ightâ€Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition. Angewandte Chemie - International Edition, 2020, 59, 23020-23024.	7.2	29
22	Visible‣ightâ€Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition. Angewandte Chemie, 2020, 132, 23220-23224.	1.6	5
23	Stereoretention in styrene heterodimerisation promoted by one-electron oxidants. Chemical Science, 2020, 11, 9309-9324.	3.7	8
24	Fungal-derived brevianamide assembly by a stereoselective semipinacolase. Nature Catalysis, 2020, 3, 497-506.	16.1	47
25	Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nature Communications, 2020, 11, 2328.	5.8	128
26	Selective Halogenation of Pyridines Using Designed Phosphine Reagents. Journal of the American Chemical Society, 2020, 142, 11295-11305.	6.6	39
27	Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Communications Chemistry, 2020, 3, .	2.0	13
28	BIMP atalyzed 1,3â€Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angewandte Chemie - International Edition, 2020, 59, 17417-17422.	7.2	24
29	Hydrogen Bonding Phase-Transfer Catalysis with Ionic Reactants: Enantioselective Synthesis of Î ³ -Fluoroamines. Journal of the American Chemical Society, 2020, 142, 14045-14051.	6.6	53
30	Ligand Design for Asymmetric Catalysis: Combining Mechanistic and Chemoinformatics Approaches. Topics in Organometallic Chemistry, 2020, , 153-189.	0.7	1
31	Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins. Molecules, 2020, 25, 1918.	1.7	8
32	Enantiomerically enriched tetrahydropyridine allyl chlorides. Chemical Science, 2020, 11, 4125-4130.	3.7	8
33	Experimental and theoretical insight into the soot tendencies of the methylcyclohexene isomers. Proceedings of the Combustion Institute, 2019, 37, 1083-1090.	2.4	13
34	A Pyridine–Pyridine Cross oupling Reaction via Dearomatized Radical Intermediates. Angewandte Chemie - International Edition, 2019, 58, 14882-14886.	7.2	61
35	Retooling Asymmetric Conjugate Additions for Sterically Demanding Substrates with an Iterative Data-Driven Approach. ACS Catalysis, 2019, 9, 7179-7187.	5.5	26
36	A Pyridine–Pyridine Crossâ€Coupling Reaction via Dearomatized Radical Intermediates. Angewandte Chemie, 2019, 131, 15024-15028.	1.6	10

#	Article	IF	CITATIONS
37	Synthesis, Characterization, and Reactivity of Complex Tricyclic Oxonium Ions, Proposed Intermediates in Natural Product Biosynthesis. Journal of the American Chemical Society, 2019, 141, 15951-15962.	6.6	10
38	Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase. Nature Chemistry, 2019, 11, 972-980.	6.6	52
39	Frontier molecular orbital effects control the hole-catalyzed racemization of atropisomeric biaryls. Chemical Science, 2019, 10, 2285-2289.	3.7	19
40	Conformational Effects on Physical-Organic Descriptors: The Case of Sterimol Steric Parameters. ACS Catalysis, 2019, 9, 2313-2323.	5.5	96
41	Hydrogen Bonding Phase-Transfer Catalysis with Potassium Fluoride: Enantioselective Synthesis of β-Fluoroamines. Journal of the American Chemical Society, 2019, 141, 2878-2883.	6.6	94
42	Palladiumâ€Catalyzed Directed <i>meta</i> â€Selective Câ^'H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates. Angewandte Chemie, 2019, 131, 10461-10468.	1.6	24
43	Palladiumâ€Catalyzed Directed <i>meta</i> â€Selective Câ~'H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates. Angewandte Chemie - International Edition, 2019, 58, 10353-10360.	7.2	76
44	Iterative Arylation of Amino Acids and Aliphatic Amines via δ (sp ³)â^'H Activation: Experimental and Computational Exploration. Angewandte Chemie, 2019, 131, 5689-5694.	1.6	26
45	Structure Determination of a Chloroenyne from <i>Laurencia majuscula</i> Using Computational Methods and Total Synthesis. Journal of Organic Chemistry, 2019, 84, 4971-4991.	1.7	18
46	Iterative Arylation of Amino Acids and Aliphatic Amines via δ (sp ³)â^'H Activation: Experimental and Computational Exploration. Angewandte Chemie - International Edition, 2019, 58, 5633-5638.	7.2	90
47	Biosynthesis of Providencin: Understanding Photochemical Cyclobutane Formation with Density Functional Theory. Organic Letters, 2019, 21, 1243-1247.	2.4	14
48	Data-mining the diaryl(thio)urea conformational landscape: Understanding the contrasting behavior of ureas and thioureas with quantum chemistry. Tetrahedron, 2019, 75, 697-702.	1.0	20
49	Nonâ€Hydrolytic βâ€Lactam Antibiotic Fragmentation by <scp>l,d</scp> â€Transpeptidases and Serine βâ€Lactamase Cysteine Variants. Angewandte Chemie, 2019, 131, 2012-2016.	1.6	4
50	Hydrogen-Bond-Dependent Conformational Switching: A Computational Challenge from Experimental Thermochemistry. Journal of Organic Chemistry, 2019, 84, 613-621.	1.7	5
51	Nonâ€Hydrolytic βâ€Lactam Antibiotic Fragmentation by <scp>l,d</scp> â€Transpeptidases and Serine βâ€Lactamase Cysteine Variants. Angewandte Chemie - International Edition, 2019, 58, 1990-1994.	7.2	27
52	Enantioselective rhodium-catalysed insertion of trifluorodiazoethanes into tin hydrides. Tetrahedron, 2019, 75, 17-25.	1.0	12
53	Hydrogenâ€Bondâ€Enabled Dynamic Kinetic Resolution of Axially Chiral Amides Mediated by a Chiral Counterion. Angewandte Chemie - International Edition, 2019, 58, 2795-2798.	7.2	48
54	Evolution of a bifunctional reductase/Diels–Alderase for fungal indole alkaloid biosynthesis. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a244-a245.	0.0	0

#	Article	IF	CITATIONS
55	Recognition of shorter and longer trimethyllysine analogues by epigenetic reader proteins. Chemical Communications, 2018, 54, 2409-2412.	2.2	15
56	A New Mechanism for Î²â€Łactamases: Class D Enzymes Degrade 1βâ€Methyl Carbapenems through Lactone Formation. Angewandte Chemie, 2018, 130, 1296-1299.	1.6	4
57	Formation of quaternary centres by copper catalysed asymmetric conjugate addition to β-substituted cyclopentenones with the aid of a quantitative structure–selectivity relationship. Chemical Science, 2018, 9, 2628-2632.	3.7	29
58	Cation–π interactions in protein–ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chemical Science, 2018, 9, 2655-2665.	3.7	184
59	NMR Prediction. , 2018, , 165-189.		2
60	The True Catalyst Revealed: The Intervention of Chiral Ca and Mg Phosphates in BrÃ,nsted Acid Promoted Asymmetric Mannich Reactions. Journal of the American Chemical Society, 2018, 140, 5412-5420.	6.6	21
61	Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components. Fuel, 2018, 212, 576-585.	3.4	31
62	A New Mechanism for βâ€Lactamases: Class D Enzymes Degrade 1βâ€Methyl Carbapenems through Lactone Formation. Angewandte Chemie - International Edition, 2018, 57, 1282-1285.	7.2	27
63	Asymmetric Total Syntheses and Structure Confirmation of Chlorofucins and Bromofucins. Chemistry - A European Journal, 2018, 24, 2634-2642.	1.7	12
64	Direct sulfonylation of anilines mediated by visible light. Chemical Science, 2018, 9, 629-633.	3.7	61
65	Selectivity in Transition Metal-catalyzed Cyclizations: Insights from Experiment and Theory. Chimia, 2018, 72, 614.	0.3	0
66	Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates. Science, 2018, 362, 799-804.	6.0	145
67	Catalytic Enantio―and Diastereoselective Mannich Addition of TosMIC to Ketimines. Chemistry - A European Journal, 2018, 24, 17660-17664.	1.7	17
68	Stereospecific 1,3-H Transfer of Indenols Proceeds via Persistent Ion-Pairs Anchored by NH··Â-Ï€ Interactions. Journal of the American Chemical Society, 2018, 140, 16740-16748.	6.6	29
69	Post-translational site-selective protein backbone α-deuteration. Nature Chemical Biology, 2018, 14, 955-963.	3.9	27
70	Bifunctional iminophosphorane catalysed enantioselective sulfa-Michael addition of alkyl thiols to alkenyl benzimidazoles. Chemical Science, 2018, 9, 6969-6974.	3.7	66
71	Asymmetric nucleophilic fluorination under hydrogen bonding phase-transfer catalysis. Science, 2018, 360, 638-642.	6.0	137
72	Dynamic Intermediates in the Radical Cation Diels–Alder Cycloaddition: Lifetime and Suprafacial Stereoselectivity. Organic Letters, 2018, 20, 2821-2825.	2.4	20

#	Article	IF	CITATIONS
73	Asymmetric Total Synthesis and Structure Confirmation of (+)-(3E)-Isolaurefucin Methyl Ether. Heterocycles, 2018, 97, 179.	0.4	4
74	Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C–H Activation Reactions: An Experimental and Computational Study. Journal of the American Chemical Society, 2017, 139, 1296-1310.	6.6	169
75	Divergent Photocyclization/1,4-Sigmatropic Rearrangements for the Synthesis of Sesquiterpenoid Derivatives. Organic Letters, 2017, 19, 484-487.	2.4	7
76	Enantioselective Silver and Amine Coâ€catalyzed Desymmetrizing Cycloisomerization of Alkyne‣inked Cyclohexanones. Angewandte Chemie - International Edition, 2017, 56, 5834-5838.	7.2	47
77	Enantioselective Silver and Amine Coâ€catalyzed Desymmetrizing Cycloisomerization of Alkyneâ€Linked Cyclohexanones. Angewandte Chemie, 2017, 129, 5928-5932.	1.6	18
78	Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4667-4672.	3.3	45
79	Visible Light Photocatalysis of 6ï€ Heterocyclization. Angewandte Chemie - International Edition, 2017, 56, 9468-9472.	7.2	79
80	Dual Goldâ€Catalyzed Threeâ€Component Reaction: Efficient Synthesis of Indeneâ€Fused Esters, Acids, and Lactones through Gold Vinylidene Intermediates. European Journal of Organic Chemistry, 2017, 2017, 1561-1565.	1.2	7
81	Phosphazene Catalyzed Addition to Electron-Deficient Alkynes: The Importance of Nonlinear Allenyl Intermediates upon Stereoselectivity. Journal of Organic Chemistry, 2017, 82, 3855-3863.	1.7	24
82	Detailed Mechanistic Studies on Palladium-Catalyzed Selective C–H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling. Journal of the American Chemical Society, 2017, 139, 763-775.	6.6	99
83	Asymmetric Induction in <i>C</i> -Alkylation of Tropane-Derived Enamines: Congruence Between Computation and Experiment. Journal of Organic Chemistry, 2017, 82, 10479-10488.	1.7	9
84	Câ^'H Cyanation of 6â€Ring Nâ€Containing Heteroaromatics. Chemistry - A European Journal, 2017, 23, 14733-14737.	1.7	31
85	Enantioselective Conjugate Addition Catalyzed by a Copper Phosphoramidite Complex: Computational and Experimental Exploration of Asymmetric Induction. ACS Catalysis, 2017, 7, 6729-6737.	5.5	31
86	Investigating <scp>d</scp> -lysine stereochemistry for epigenetic methylation, demethylation and recognition. Chemical Communications, 2017, 53, 13264-13267.	2.2	29
87	Construction of 6,10- <i>syn</i> - and - <i>anti</i> -2,5-Dioxabicyclo[2.2.1]heptane Skeletons via Oxonium Ion Formation/Fragmentation: Prediction of Structure of (<i>E</i>)-Ocellenyne by NMR Calculation. Organic Letters, 2017, 19, 6252-6255.	2.4	5
88	Total Synthesis of (â^)-Himalensine A. Journal of the American Chemical Society, 2017, 139, 17755-17758.	6.6	146
89	Visible Light Photocatalysis of 6ï€ Heterocyclization. Angewandte Chemie, 2017, 129, 9596-9600.	1.6	17
90	Mechanistic Insight into Palladium-Catalyzed Cycloisomerization: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2017, 139, 10104-10114.	6.6	58

#	Article	IF	CITATIONS
91	Molecular Recognition in Asymmetric Counteranion Catalysis: Understanding Chiral Phosphate-Mediated Desymmetrization. Journal of the American Chemical Society, 2017, 139, 8886-8896.	6.6	47
92	Adenosine Monophosphate Binding Stabilizes the KTN Domain of the <i>Shewanella denitrificans</i> Kef Potassium Efflux System. Biochemistry, 2017, 56, 4219-4234.	1.2	9
93	Heptamethylindenyl (Ind*) enables diastereoselective benzamidation of cyclopropenes via Rh(<scp>iii</scp>)-catalyzed C–H activation. Chemical Science, 2017, 8, 1015-1020.	3.7	95
94	Furan Production from Glycoaldehyde over HZSM-5. ACS Sustainable Chemistry and Engineering, 2016, 4, 2615-2623.	3.2	19
95	Development of a True Transition State Force Field from Quantum Mechanical Calculations. Journal of Chemical Theory and Computation, 2016, 12, 1833-1844.	2.3	27
96	Mechanisms of histone lysine-modifying enzymes: A computational perspective on the role of the protein environment. Journal of Molecular Graphics and Modelling, 2016, 67, 69-84.	1.3	12
97	Catalytic Control in Cyclizations: From Computational Mechanistic Understanding to Selectivity Prediction. Accounts of Chemical Research, 2016, 49, 1042-1051.	7.6	71
98	A Counterionâ€Directed Approach to the Diels–Alder Paradigm: Cascade Synthesis of Tricyclic Fused Cyclopropanes. Angewandte Chemie - International Edition, 2016, 55, 13813-13817.	7.2	9
99	Synthesis of malhamensilipin A exploiting iterative epoxidation/chlorination: experimental and computational analysis of epoxide-derived chloronium ions. Chemical Science, 2016, 7, 7040-7049.	3.7	13
100	Computing organic stereoselectivity – from concepts to quantitative calculations and predictions. Chemical Society Reviews, 2016, 45, 6093-6107.	18.7	175
101	A Counterionâ€Directed Approach to the Diels–Alder Paradigm: Cascade Synthesis of Tricyclic Fused Cyclopropanes. Angewandte Chemie, 2016, 128, 14017-14021.	1.6	3
102	Cation–΀ interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and selectivity. Organic and Biomolecular Chemistry, 2016, 14, 10926-10938.	1.5	27
103	Investigations on recyclisation and hydrolysis in avibactam mediated serine Î ² -lactamase inhibition. Organic and Biomolecular Chemistry, 2016, 14, 4116-4128.	1.5	23
104	Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization. Nature Communications, 2016, 7, 10109.	5.8	110
105	QM/MM study on the enantioselectivity of spiroacetalization catalysed by an imidodiphosphoric acid catalyst: how confinement works. Organic and Biomolecular Chemistry, 2016, 14, 3031-3039.	1.5	24
106	Unraveling innate substrate control in site-selective palladium-catalyzed C–H heterocycle functionalization. Chemical Science, 2016, 7, 3900-3909.	3.7	58
107	Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment. Chemistry - A European Journal, 2015, 21, 18869-18869.	1.7	1
108	Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment. Chemistry - A European Journal, 2015, 21, 18983-18992.	1.7	17

#	Article	IF	CITATIONS
109	Substrate-Controlled Asymmetric Total Syntheses of Microcladallenesâ€A, B, and C Based on the Proposed Structures. Chemistry - A European Journal, 2015, 21, 15988-15997.	1.7	22
110	Role of Hydrogenâ€Bonding Acceptors in Organoâ€Enamine Catalysis. Chemistry - A European Journal, 2015, 21, 11687-11691.	1.7	15
111	Origins of Asymmetric Phosphazene Organocatalysis: Computations Reveal a Common Mechanism for Nitro- and Phospho-Aldol Additions. Journal of Organic Chemistry, 2015, 80, 2756-2766.	1.7	30
112	Small Molecule Inhibitors of Bromodomain–Acetyl-lysine Interactions. ACS Chemical Biology, 2015, 10, 22-39.	1.6	156
113	Catalytic enantioselective synthesis of indanes by a cation-directed 5-endo-trig cyclization. Nature Chemistry, 2015, 7, 171-177.	6.6	87
114	Enantioselective Desymmetrization of Prochiral Cyclohexanones by Organocatalytic Intramolecular Michael Additions to α,βâ€Unsaturated Esters. Angewandte Chemie - International Edition, 2015, 54, 4899-4903.	7.2	73
115	Coordination diversity in hydrogen-bonded homoleptic fluoride–alcohol complexes modulates reactivity. Chemical Science, 2015, 6, 5293-5302.	3.7	74
116	Thermal and Photochemical Mechanisms for Cyclobutane Formation in Bielschowskysin Biosynthesis. Synlett, 2015, 26, 501-507.	1.0	9
117	Ethanol Dehydration in HZSM-5 Studied by Density Functional Theory: Evidence for a Concerted Process. Journal of Physical Chemistry A, 2015, 119, 3604-3614.	1.1	44
118	α- and α′-Lithiation–Electrophile Trapping of <i>N</i> -Thiopivaloyl and <i>N</i> - <i>tert</i> -Butoxythiocarbonyl α-Substituted Azetidines: Rationalization of the Regiodivergence Using NMR and Computation. Journal of Organic Chemistry, 2015, 80, 9838-9846.	1.7	21
119	Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 149-154.	3.3	210
120	Asymmetric Total Synthesis of (+)â€Bermudenynol, a C ₁₅ <i>Laurencia</i> Metabolite with a Vinyl Chloride Containing Oxocene Skeleton, through Intramolecular Amide Enolate Alkylation. Angewandte Chemie - International Edition, 2014, 53, 272-276.	7.2	36
121	Ligand Bite Angleâ€Dependent Palladiumâ€Catalyzed Cyclization of Propargylic Carbonates to 2â€Alkynyl Azacycles or Cyclic Dienamides. Angewandte Chemie - International Edition, 2014, 53, 1915-1920.	7.2	48
122	Intramolecular Diels–Alder Reactions of Cycloalkenones: Stereoselectivity, Lewis Acid Acceleration, and Halogen Substituent Effects. Journal of the American Chemical Society, 2014, 136, 2397-2403.	6.6	46
123	Phaseâ€Transferâ€Catalysed Synthesis of Pyrroloindolines and Pyridoindolines by a Hydrogenâ€Bondâ€Assisted Isocyanide Cyclization Cascade. Chemistry - A European Journal, 2014, 20, 3005-3009.	1.7	18
124	It's all downhill from here. Nature Chemistry, 2014, 6, 88-89.	6.6	15
125	A Series of Potent CREBBP Bromodomain Ligands Reveals an Inducedâ€Fit Pocket Stabilized by a Cation–π Interaction. Angewandte Chemie - International Edition, 2014, 53, 6126-6130.	7.2	108
126	A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustainable Chemistry and Engineering, 2014, 2, 472-485.	3.2	317

#	Article	IF	CITATIONS
127	Dissecting non-covalent interactions in oxazaborolidinium catalyzed cycloadditions of maleimides. Organic and Biomolecular Chemistry, 2014, 12, 1717.	1.5	29
128	Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to <i>Se</i> -Allyl-selenocysteine in Proteins. Journal of the American Chemical Society, 2013, 135, 12156-12159.	6.6	109
129	Structure Reassignment of Laurefurenynes A and B by Computation and Total Synthesis. Chemistry - A European Journal, 2013, 19, 12644-12648.	1.7	31
130	Mechanistic Investigations into the Enantioselective Coniaâ€Ene Reaction Catalyzed by Cinchonaâ€Derived Amino Urea Pre atalysts and Cu ^I . Chemistry - A European Journal, 2013, 19, 14286-14295.	1.7	30
131	Enhanced Reactivity in Dioxirane C–H Oxidations via Strain Release: A Computational and Experimental Study. Journal of Organic Chemistry, 2013, 78, 4037-4048.	1.7	74
132	Mechanistic Study of a Ru-Xantphos Catalyst for Tandem Alcohol Dehydrogenation and Reductive Aryl-Ether Cleavage. ACS Catalysis, 2013, 3, 963-974.	5.5	42
133	<i>C</i> -Alkylation of Chiral Tropane- and Homotropane-Derived Enamines. Journal of Organic Chemistry, 2013, 78, 1508-1518.	1.7	12
134	Computational organic chemistry. Annual Reports on the Progress of Chemistry Section B, 2013, 109, 235.	0.8	15
135	Diels–Alder Reactivities of Strained and Unstrained Cycloalkenes with Normal and Inverse-Electron-Demand Dienes: Activation Barriers and Distortion/Interaction Analysis. Journal of the American Chemical Society, 2013, 135, 15642-15649.	6.6	165
136	Synthesis of Cyclic α-Aminophosphonates through Copper-Catalyzed Enamine Activation. Synthesis, 2013, 45, 463-470.	1.2	10
137	Concise Substrate-Controlled Asymmetric Total Syntheses of Dioxabicyclic Marine Natural Products with 2,10-Dioxabicyclo-[7.3.0]dodecene and 2,9-Dioxabicyclo[6.3.0]undecene Skeletons. Journal of the American Chemical Society, 2012, 134, 20178-20188.	6.6	35
138	Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis. Nature, 2012, 483, 355-358.	13.7	117
139	Unusual Base-Induced Rearrangement of exo-9-Oxabicyclo[4.2.1]non-7-ene Oxide to exo-8-Hydroxybicyclo[3.3.0]octan-2-one. Heterocycles, 2012, 84, 625.	0.4	6
140	Dinuclear Palladium Complexes—Precursors or Catalysts?. Angewandte Chemie - International Edition, 2012, 51, 10448-10450.	7.2	50
141	An Efficient Computational Model to Predict the Synthetic Utility of Heterocyclic Arynes. Angewandte Chemie - International Edition, 2012, 51, 2758-2762.	7.2	96
142	Unraveling the Mechanism of Cascade Reactions of Zincke Aldehydes. Journal of the American Chemical Society, 2011, 133, 3895-3905.	6.6	88
143	Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins. Journal of Physical Chemistry Letters, 2011, 2, 2846-2852.	2.1	318
144	A stereoselective total synthesis of (±)-tormesol. Tetrahedron, 2011, 67, 10017-10025.	1.0	9

#	Article	IF	CITATIONS
145	Experimental Diels–Alder Reactivities of Cycloalkenones and Cyclic Dienes Explained through Transition tate Distortion Energies. Angewandte Chemie - International Edition, 2011, 50, 10366-10368.	7.2	125
146	Goldâ€Catalyzed, Intramolecular, Oxygenâ€Transfer Reactions of 2â€Alkynylâ€1,5â€diketones or 2â€Alkynylâ€5â€ketoesters: Scope, Expansion, and Mechanistic Investigations on a New [4+2] Cycloaddition. Chemistry - A European Journal, 2011, 17, 10690-10699.	1.7	17
147	Indolyne and Aryne Distortions and Nucleophilic Regioselectivites. Journal of the American Chemical Society, 2010, 132, 1267-1269.	6.6	225
148	The [4+2], not [2+2], Mechanism Occurs in the Goldâ€Catalyzed Intramolecular Oxygen Transfer Reaction of 2â€Alkynylâ€1,5â€Diketones. Angewandte Chemie - International Edition, 2010, 49, 9132-9135.	7.2	35
149	Origins of Regioselectivity of Dielsâ`'Alder Reactions for the Synthesis of Bisanthraquinone Antibiotic BE-43472B. Journal of Organic Chemistry, 2010, 75, 922-928.	1.7	18
150	Indolyne Experimental and Computational Studies: Synthetic Applications and Origins of Selectivities of Nucleophilic Additions. Journal of the American Chemical Society, 2010, 132, 17933-17944.	6.6	215
151	Origins of Stereoselectivity in the <i>trans</i> Dielsâ^'Alder Paradigm. Journal of the American Chemical Society, 2010, 132, 9335-9340.	6.6	101
152	Mechanistic Insights into the Catalytic Asymmetric Allylboration of Ketones: BrÃ,nsted or Lewis Acid Activation?. Organic Letters, 2009, 11, 37-40.	2.4	41
153	Gold(I)-Catalyzed Intermolecular Hydroalkoxylation of Allenes: A DFT study. Organic Letters, 2009, 11, 2237-2240.	2.4	118
154	Hydrogen Bonding and π-Stacking: How Reliable are Force Fields? A Critical Evaluation of Force Field Descriptions of Nonbonded Interactions. Journal of Chemical Information and Modeling, 2009, 49, 944-955.	2.5	161
155	Stereostructure Assignment of Flexible Five-Membered Rings by GIAO 13C NMR Calculations: Prediction of the Stereochemistry of Elatenyne. Journal of Organic Chemistry, 2008, 73, 4053-4062.	1.7	82
156	Theoretical Study of the Asymmetric Conjugate Alkenylation of Enones Catalyzed by Binaphthols. Journal of Organic Chemistry, 2008, 73, 5078-5089.	1.7	54
157	1,5-Anti Stereocontrol in the Boron-Mediated Aldol Reactions of β-Alkoxy Methyl Ketones:  The Role of the Formyl Hydrogen Bond. Journal of Organic Chemistry, 2008, 73, 1253-1263.	1.7	65
158	Enantioselectivity in the boron aldol reactions of methyl ketones. Chemical Communications, 2007, , 2124.	2.2	28
159	Exploration of the Accessible Chemical Space of Acyclic Alkanes. Journal of Chemical Information and Modeling, 2007, 47, 2124-2132.	2.5	15
160	Understanding the Origins of Remote Asymmetric Induction in the Boron Aldol Reactions of β-Alkoxy Methyl Ketones. Organic Letters, 2006, 8, 4299-4302.	2.4	67
161	GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. F1000Research, 0, 9, 291.	0.8	212
162	Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Topics in Catalysis, 0, , 1.	1.3	3