Rosemary E Gale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2443778/publications.pdf

Version: 2024-02-01

38 papers 5,290 citations

346980 22 h-index 36 g-index

38 all docs 38 docs citations

38 times ranked

5341 citing authors

#	Article	IF	Citations
1	Therapy for isocitrate dehydrogenase 2 (<i>IDH2</i>) ^{R172} â€mutant acute myeloid leukaemia. British Journal of Haematology, 2022, 196, 1348-1352.	1.2	3
2	Additional impact of mutational genotype on prognostic determination in resistant and relapsed acute myeloid leukaemia. Leukemia Research, 2021, 108, 106553.	0.4	0
3	Analysis of the clinical impact of <i>NPM1</i> mutant allele burden in a large cohort of younger adult patients with acute myeloid leukaemia. British Journal of Haematology, 2020, 188, 852-859.	1.2	13
4	The clinical impact of mutant <i>DNMT3A</i> R882 variant allele frequency in acute myeloid leukaemia. British Journal of Haematology, 2020, 189, e81-e86.	1.2	5
5	Immunophenotypic analysis of cell cycle status in acute myeloid leukaemia: relationship to cytogenetics, genotype and clinical outcome. British Journal of Haematology, 2018, 181, 486-494.	1.2	1
6	The subclonal complexity of STIL-TAL1+ T-cell acute lymphoblastic leukaemia. Leukemia, 2018, 32, 1984-1993.	3.3	26
7	No evidence that CD33 splicing SNP impacts the response to GO in younger adults with AML treated on UK MRC/NCRI trials. Blood, 2018, 131, 468-471.	0.6	36
8	A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML. Blood, 2017, 129, 1143-1154.	0.6	125
9	Genetically distinct leukemic stem cells in human CD34â^' acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. Journal of Experimental Medicine, 2016, 213, 1513-1535.	4.2	120
10	Cell cycle status in <scp>AML</scp> blast cells from peripheral blood, bone marrow aspirates and trephines and implications for biological studies and treatment. British Journal of Haematology, 2016, 174, 275-279.	1.2	7
11	Acute myeloid leukaemia. Nature Reviews Disease Primers, 2016, 2, 16010.	18.1	277
12	Assessment of Minimal Residual Disease in Standard-Risk AML. New England Journal of Medicine, 2016, 374, 422-433.	13.9	662
13	Simpson's Paradox and the Impact of Different <i>DNMT3A</i> Mutations on Outcome in Younger Adults With Acute Myeloid Leukemia. Journal of Clinical Oncology, 2015, 33, 2072-2083.	0.8	82
14	Impact of FLT3ITD mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood, 2014, 124, 273-276.	0.6	108
15	The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood, 2011, 118, 409-412.	0.6	233
16	Prognostic Significance of <i>CEBPA</i> Mutations in a Large Cohort of Younger Adult Patients With Acute Myeloid Leukemia: Impact of Double <i>CEBPA</i> Mutations and the Interaction With <i>FLT3</i> and <i>NPM1</i> Mutations. Journal of Clinical Oncology, 2010, 28, 2739-2747.	0.8	270
17	Estimating the Replication Rate of Hematopoietic Stem Cells (HSC) In Vivo Blood, 2009, 114, 2522-2522.	0.6	1
18	The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood, 2008, 111, 2776-2784.	0.6	666

#	Article	IF	CITATIONS
19	Long-term serial analysis of X-chromosome inactivation patterns and JAK2 V617F mutant levels in patients with essential thrombocythemia show that minor mutant-positive clones can remain stable for many years. Blood, 2007, 109, 1241-1243.	0.6	60
20	A Genome-Wide Map of Acquired Uniparental Disomy in Acute Myeloid Leukemia Blood, 2007, 110, 996-996.	0.6	1
21	The Occurrence of Mutations in PTPN11 and KRAS Is Not Dissimilar in Patients with Indolent Juvenile Myelomonocytic Leukemia (JMML) from Those with Clinically More Aggressive Disease Blood, 2007, 110, 2424-2424.	0.6	0
22	Identification of Two Novel Homozygous HAX1 Mutations in an Autosomal Recessive Jewish and Two Unrelated Sporadic British Families with Severe Congenital Neutropenia Blood, 2007, 110, 3309-3309.	0.6	2
23	No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood, 2005, 106, 3658-3665.	0.6	220
24	High Incidence of Notch-1 Mutations in Adult Patients with T-Cell Acute Lymphoblastic Leukaemia Blood, 2005, 106, 1447-1447.	0.6	3
25	Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood, 2002, 100, 2393-2398.	0.6	287
26	The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood, 2001, 98, 1752-1759.	0.6	1,392
27	A Large Proportion of Patients With a Diagnosis of Essential Thrombocythemia Do Not Have a Clonal Disorder and May Be at Lower Risk of Thrombotic Complications. Blood, 1999, 93, 417-424.	0.6	204
28	A Large Proportion of Patients With a Diagnosis of Essential Thrombocythemia Do Not Have a Clonal Disorder and May Be at Lower Risk of Thrombotic Complications. Blood, 1999, 93, 417-424.	0.6	8
29	The activating splice mutation in intron 3 of the thrombopoietin gene is not found in patients with nonâ€familial essential thrombocythaemia. British Journal of Haematology, 1998, 102, 1341-1343.	1.2	43
30	Mutations of the granulocyte-colony stimulating factor receptor in patients with severe congenital neutropenia are not required for transformation to acute myeloid leukaemia and may be a bystander phenomenon. British Journal of Haematology, 1998, 101, 141-149.	1.2	47
31	Activating point mutations in the \hat{I}^2C chain of the GM-CSF, IL-3 and IL-5 receptors are not a major contributory factor in the pathogenesis of acute myeloid leukaemia. British Journal of Haematology, 1998, 103, 66-71.	1.2	8
32	A Truncated Isoform of the Human \hat{l}^2 Chain Common to the Receptors for Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-3 (IL-3), and IL-5 With Increased mRNA Expression in Some Patients With Acute Leukemia. Blood, 1998, 91, 54-63.	0.6	33
33	A Truncated Isoform of the Human Î ² Chain Common to the Receptors for Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-3 (IL-3), and IL-5 With Increased mRNA Expression in Some Patients With Acute Leukemia. Blood, 1998, 91, 54-63.	0.6	5
34	Acquired skewing of Xâ€chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. British Journal of Haematology, 1997, 98, 512-519.	1.2	230
35	Analysis of granulocyte colony stimulating factor receptor isoforms, polymorphisms and mutations in normal haemopoietic cells and acute myeloid leukaemia blasts. British Journal of Haematology, 1996, 93, 527-533.	1.2	42
36	THE RETINOBLASTOMA GENE (RB1) IN ACUTE MYELOID LEUKAEMIA: ANALYSIS OF GENE REARRANGEMENTS, PROTEIN EXPRESSION AND COMPARISON OF DISEASE OUTCOME. British Journal of Haematology, 1996, 94, 342-351.	1.2	23

#	Article	IF	CITATIONS
37	LINEAGE INVOLVEMENT ON CHRONIC MYELOPROLIFERATIVE DISORDERS. British Journal of Haematology, 1994, 87, 882-882.	1.2	1
38	CLONAL ANALYSIS USING X-LINKED DNA POLYMORPHISMS. British Journal of Haematology, 1993, 85, 2-8.	1.2	46