
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2443696/publications.pdf Version: 2024-02-01

LIUSA RADRIEDI

#	Article	IF	CITATIONS
1	Design, obtainment and properties of glasses and glass–ceramics from coal fly ash. Fuel, 1999, 78, 271-276.	3.4	144
2	CRT glass state of the art. Journal of the European Ceramic Society, 2007, 27, 1623-1629.	2.8	142
3	Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies. Ceramics International, 2016, 42, 13333-13338.	2.3	137
4	Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management, 2010, 30, 673-679.	3.7	136
5	Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Management, 2013, 33, 2307-2315.	3.7	131
6	Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes. Journal of the European Ceramic Society, 2000, 20, 2477-2483.	2.8	129
7	Mix-design and characterization of alkali activated materials based on metakaolin and ladle slag. Applied Clay Science, 2013, 73, 78-85.	2.6	105
8	Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics. Journal of Hazardous Materials, 2006, 135, 149-155.	6.5	101
9	Glass waste as supplementary cementing materials: The effects of glass chemical composition. Cement and Concrete Composites, 2015, 55, 45-52.	4.6	100
10	Recycling of CRT panel glass as fluxing agent in the porcelain stoneware tile production. Ceramics International, 2008, 34, 1289-1295.	2.3	98
11	Vitrification of industrial and natural wastes with production of glass fibres. Journal of the European Ceramic Society, 2000, 20, 2485-2490.	2.8	94
12	Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses. Waste Management, 2005, 25, 183-189.	3.7	91
13	Bulk and sintered glass-ceramics by recycling municipal incinerator bottom ash. Journal of the European Ceramic Society, 2000, 20, 1637-1643.	2.8	82
14	Alkali activation processes for incinerator residues management. Waste Management, 2013, 33, 1740-1749.	3.7	78
15	Design of glass foams with low environmental impact. Ceramics International, 2015, 41, 3400-3408.	2.3	74
16	Crystallization of (Na ₂ O–MgO)–CaO–Al ₂ O ₃ –SiO ₂ Glassy Systems Formulated from Waste Products. Journal of the American Ceramic Society, 2000, 83, 2515-2520.	1.9	73
17	The use of egg shells to produce Cathode Ray Tube (CRT) glass foams. Ceramics International, 2013, 39, 9071-9078.	2.3	70
18	Glass matrix composites from solid waste materials. Journal of the European Ceramic Society, 2001, 21, 453-460.	2.8	69

#	Article	IF	CITATIONS
19	Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or dolomite. Ceramics International, 2014, 40, 13371-13379.	2.3	64
20	Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics. Materials Research Bulletin, 1997, 32, 637-648.	2.7	63
21	Utilisation of municipal incinerator grate slag for manufacturing porcelainized stoneware tiles manufacturing. Journal of the European Ceramic Society, 2002, 22, 1457-1462.	2.8	58
22	Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceramics International, 2013, 39, 5427-5435.	2.3	57
23	Post-treated incinerator bottom ash as alternative raw material for ceramic manufacturing. Journal of the European Ceramic Society, 2012, 32, 2843-2852.	2.8	56
24	The recycling of MSWI bottom ash in silicate based ceramic. Ceramics International, 2010, 36, 2469-2476.	2.3	55
25	Reuse of incinerator bottom and fly ashes to obtain glassy materials. Journal of Hazardous Materials, 2008, 153, 1270-1274.	6.5	54
26	Solubility, reactivity and nucleation effect of Cr2O3 in the CaO-MgO-Al2O3-SiO2 glassy system. Journal of Materials Science, 1994, 29, 6273-6280.	1.7	53
27	Effect of rice husk ash (RHA) in the synthesis of (Pr,Zr)SiO4 ceramic pigment. Journal of the European Ceramic Society, 2007, 27, 3483-3488.	2.8	52
28	Sintered Glass-Ceramics and Glass-Ceramic Matrix Composites from CRT Panel Glass. Journal of the American Ceramic Society, 2005, 88, 1886-1891.	1.9	50
29	Cathode ray tube glass recycling: an example of clean technology. Waste Management and Research, 2005, 23, 314-321.	2.2	49
30	Geopolymers: An option for the valorization of incinerator bottom ash derived "end of waste― Ceramics International, 2015, 41, 2116-2123.	2.3	42
31	Use of municipal incinerator bottom ash as sintering promoter in industrial ceramics. Waste Management, 2002, 22, 859-863.	3.7	41
32	Recycling of EOL CRT glass into ceramic glaze formulations and its environmental impact by LCA approach. International Journal of Life Cycle Assessment, 2007, 12, 448-454.	2.2	41
33	A new environmentally friendly process for the recovery of gold from electronic waste. Environmental Chemistry Letters, 2010, 8, 171-178.	8.3	41
34	Nucleation and Crystallization of a Lithium Aluminosilicate Glass. Journal of the American Ceramic Society, 1997, 80, 3077-3083.	1.9	40
35	Incinerator Bottom Ash and Ladle Slag for Geopolymers Preparation. Waste and Biomass Valorization, 2014, 5, 393-401.	1.8	40
36	Characterization of Rice Husk Ash and Its Recycling as Quartz Substitute for the Production of Ceramic Glazes. Journal of the American Ceramic Society, 2010, 93, 121-126.	1.9	39

#	Article	IF	CITATIONS
37	The Anorthite-Diopside System: Structural and Devitrification Study. Part II: Crystallinity Analysis by the Rietveld-RIR Method. Journal of the American Ceramic Society, 2005, 88, 3131-3136.	1.9	38
38	Synthesis of chromium containing pigments from chromium galvanic sludges. Journal of Hazardous Materials, 2008, 156, 466-471.	6.5	38
39	Agricultural waste in the synthesis of coral ceramic pigment. Dyes and Pigments, 2012, 94, 207-211.	2.0	37
40	New ceramic materials from MSWI bottom ash obtained by an innovative microwave-assisted sintering process. Journal of the European Ceramic Society, 2017, 37, 323-331.	2.8	37
41	Recycling of Screen Glass Into New Traditional Ceramic Materials. International Journal of Applied Ceramic Technology, 2010, 7, 909-917.	1.1	36
42	Title is missing!. Journal of Materials Science, 2001, 36, 4869-4873.	1.7	34
43	Thermal and chemical behaviour of different glasses containing steel fly ash and their transformation into glass-ceramics. Journal of the European Ceramic Society, 2002, 22, 1759-1765.	2.8	34
44	Glass–Ceramic Foams from Borosilicate Glass Waste. International Journal of Applied Glass Science, 2014, 5, 136-145.	1.0	33
45	Crystallisation and microstructure of nepheline–forsterite glass-ceramics. Ceramics International, 2013, 39, 2955-2966.	2.3	32
46	Nucleation and Crystallization of New Glasses from Fly Ash Originating from Thermal Power Plants. Journal of the American Ceramic Society, 2001, 84, 1851-1858.	1.9	31
47	Feasibility of Using Cordierite Glass eramics as Tile Glazes. Journal of the American Ceramic Society, 1997, 80, 1757-1766.	1.9	31
48	The circular economy of agro and postâ€consumer residues as raw materials for sustainable ceramics. International Journal of Applied Ceramic Technology, 2020, 17, 22-31.	1.1	31
49	Valorization of MSWI bottom ash through ceramic glazing process: a new technology. Journal of Cleaner Production, 2012, 23, 147-157.	4.6	30
50	Rice Husk Ash (RHA) Recycling in Brick Manufacture: Effects on Physical and Microstructural Properties. Waste and Biomass Valorization, 2018, 9, 2529-2539.	1.8	30
51	Spent Coffee Grounds in the Production of Lightweight Clay Ceramic Aggregates in View of Urban and Agricultural Sustainable Development. Materials, 2019, 12, 3581.	1.3	30
52	Structure, chemical durability and crystallization behavior of incinerator-based glassy systems. Journal of Non-Crystalline Solids, 2008, 354, 521-528.	1.5	29
53	Minimization of Pb content in a ceramic glaze by reformulation the composition with secondary raw materials. Ceramics International, 2011, 37, 1367-1375.	2.3	29
54	Integrated approach to establish the sinter-crystallization ability of glasses from secondary raw material. Journal of Non-Crystalline Solids, 2011, 357, 10-17.	1.5	28

#	Article	IF	CITATIONS
55	Surface properties of new green building material after TiO2–SiO2 coatings deposition. Ceramics International, 2016, 42, 4866-4874.	2.3	24
56	Sinter-crystallization in air and inert atmospheres of a glass from pre-treated municipal solid waste bottom ashes. Journal of Non-Crystalline Solids, 2014, 389, 50-59.	1.5	23
57	New fired bricks based on municipal solid waste incinerator bottom ash. Waste Management and Research, 2017, 35, 1055-1063.	2.2	23
58	Toxicological analysis of ceramic building materials – Tiles and glasses – Obtained from post-treated bottom ashes. Waste Management, 2019, 98, 50-57.	3.7	23
59	Use of Incinerator Bottom Ash for Frit Production. Journal of Industrial Ecology, 2010, 14, 200-216.	2.8	22
60	Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather) Tj ETQq0 0 0 (United Kingdom), 2013, 34, 1225-1237.) rgBT /Ove 1.2	erlock 10 Tf 5 21
61	Influence of fine aggregates on the microstructure, porosity and chemico-mechanical stability of inorganic polymer concretes. Construction and Building Materials, 2015, 96, 473-483.	3.2	21
62	Lead waste glasses management: Chemical pretreatment for use in cementitious composites. Waste Management and Research, 2017, 35, 958-966.	2.2	20
63	Manufacturing and durability of alkali activated mortars containing different types of glass waste as aggregates valorisation. Construction and Building Materials, 2020, 237, 117733.	3.2	20
64	Physical Properties of Quenched Glasses in the Li2O-ZrO2-SiO2 System. Journal of the American Ceramic Society, 1996, 79, 1092-1094.	1.9	19
65	Comparison of biomethane production and digestate characterization for selected agricultural substrates in Italy. Environmental Technology (United Kingdom), 2014, 35, 2212-2226.	1.2	19
66	Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach. Journal of Hazardous Materials, 2015, 286, 474-483.	6.5	19
67	VALORIZATION OF AGRO-INDUSTRIAL WASTES IN LIGHTWEIGHT AGGREGATES FOR AGRONOMIC USE: PRELIMINARY STUDY. Environmental Engineering and Management Journal, 2017, 16, 1691-1699.	0.2	19
68	Structural studies and electrical properties of recycled glasses from glass and incinerator wastes. Journal of Materials Science, 2001, 36, 2173-2177.	1.7	18
69	New Blended Cement from Polishing and Glazing Ceramic Sludge. International Journal of Applied Ceramic Technology, 2010, 7, 546-555.	1.1	17
70	Effect of the chemical composition of different types of recycled glass used as aggregates on the ASR performance of cement mortars. Construction and Building Materials, 2017, 154, 804-809.	3.2	17
71	The Environmental Friendly Route to Obtain Sodium Silicate Solution from Rice Husk Ash: A Comparative Study with Commercial Silicates Deflocculating Agents. Waste and Biomass Valorization, 2020, 11, 6295-6305.	1.8	17
72	Sintering and Crystallization of a Glass Powder in the Li ₂ O–ZrO ₂ –SiO ₂ System. Journal of the American Ceramic Society, 1998, 81, 777-780.	1.9	16

#	Article	IF	CITATIONS
73	Reutilization of waste inert glass from the disposal of polluted dredging spoils by the obtainment of ceramic products for tiles applications. Journal of Materials Science, 2005, 40, 5259-5264.	1.7	16
74	The microstructure and mechanical properties of sintered celsian and strontium-celsian glass-ceramics. Materials Research Bulletin, 1995, 30, 27-41.	2.7	14
75	New polypropylene/glass composites: Effect of glass fibers from cathode ray tubes on thermal and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2010, 41, 435-440.	3.8	14
76	Experimental and MD Simulations Study of CaOâ^'ZrO2â^'SiO2Glasses. Journal of Physical Chemistry B, 2003, 107, 6519-6525.	1.2	13
77	Valorization of Spent Coffee Grounds, Biochar and other residues to Produce Lightweight Clay Ceramic Aggregates Suitable for Nursery Grapevine Production. Horticulturae, 2020, 6, 58.	1.2	13
78	Preliminary Study on Sustainable NPK Slow-Release Fertilizers Based on Byproducts and Leftovers: A Design-of-Experiment Approach. ACS Omega, 2020, 5, 27154-27163.	1.6	13
79	Weathered bottom ash from municipal solid waste incineration: Alkaline activation for sustainable binders. Construction and Building Materials, 2022, 327, 126983.	3.2	13
80	Influence of the pozzolanic fraction obtained from vitrified bottom-ashes from MSWI on the properties of cementitious composites. Materials and Structures/Materiaux Et Constructions, 2005, 38, 367-371.	1.3	12
81	New composite materials based on glass waste. Composites Part B: Engineering, 2013, 45, 497-503.	5.9	11
82	Synthesis and Characterization of Biochar-Based Geopolymer Materials. Applied Sciences (Switzerland), 2021, 11, 10945.	1.3	11
83	Recycling of Waste Corundum Abrasive Powder in MK-Based Geopolymers. Polymers, 2022, 14, 2173.	2.0	11
84	Kinetic study of surface nucleated MgO-CaO-Al2O3-SiO2 glasses. Journal of Thermal Analysis, 1992, 38, 2639-2647.	0.7	10
85	The effect of the addition of ZrSiO4 on the crystallization of powdered glass. Thermochimica Acta, 1996, 286, 375-386.	1.2	10
86	Experimental and computer simulation study of glasses belonging to diopside–anorthite system. Journal of Non-Crystalline Solids, 2004, 345-346, 724-729.	1.5	10
87	New Geopolymers Based on Electric Arc Furnace Slag. Advances in Science and Technology, 0, , .	0.2	10
88	Preliminary studies on the valorization of animal flour ash for the obtainment of active glasses. Ceramics International, 2014, 40, 5619-5628.	2.3	10
89	Materiales vitrocerÃ;micos del sistema MgO-Al ₂ 0 ₃ -SiO ₂ a partir de ceniza de cÃ;scara de arroz. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2011, 50, 201-206.	0.9	10
90	Release of agronomical nutrient from zeolitite substrate containing phosphatic waste. Environmental Science and Pollution Research, 2014, 21, 13237-13242.	2.7	8

#	Article	IF	CITATIONS
91	Thermal approach to evaluate the sintering–crystallization ability in a nepheline–forsterite-based glass-ceramics. Journal of Thermal Analysis and Calorimetry, 2016, 123, 241-248.	2.0	8
92	Incinerator waste as secondary raw material: examples of applications in glasses, glass-ceramics and ceramics. Geological Society Special Publication, 2004, 236, 423-433.	0.8	7
93	Sintering and crystallization behavior of CaMgSi2O6–NaFeSi2O6 based glass-ceramics. Journal of Applied Physics, 2009, 106, .	1.1	7
94	Rapid screening of different chelating agents in the lead extraction from cathode ray tube (CRT) funnel glass. Environmental Science and Pollution Research, 2014, 21, 13230-13236.	2.7	7
95	Geopolymers based on the valorization of Municipal Solid Waste Incineration residues. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012125.	0.3	7
96	Valorization of Al slag in the production of green ceramic tiles: Effect of experimental conditions on microstructure and crystalline phase composition. Journal of the American Ceramic Society, 2021, 104, 776-784.	1.9	7
97	Durability of biopolymeric composites formulated with fillers from a byâ€product of coffee roasting. Polymer Composites, 2022, 43, 1485-1493.	2.3	7
98	Influence of some transition metal cations on the properties of BaO-containing glasses and glass-ceramics. Materials Research Bulletin, 1999, 34, 1825-1836.	2.7	6
99	Life cycle assessment of advertising folders. International Journal of Life Cycle Assessment, 2012, 17, 625-634.	2.2	6
100	CATHODE RAY TUBE (CRT) LEAD GLASS: LEAD LEACHING STUDY AFTER A CHELATING AGENT TREATMENT. Environmental Engineering and Management Journal, 2015, 14, 1503-1509.	0.2	6
101	Efficient chemical stabilization of tannery wastewater pollutants in a single step process: Geopolymerization. Sustainable Environment Research, 2021, 31, .	2.1	6
102	Recovery of Cork Manufacturing Waste within Mortar and Polyurethane: Feasibility of Use and Physical, Mechanical, Thermal Insulating Properties of the Final Green Composite Construction Materials. Applied Sciences (Switzerland), 2022, 12, 3844.	1.3	6
103	Suitability of Porous Inorganic Materials from Industrial Residues and Bioproducts for Use in Horticulture: A Multidisciplinary Approach. Applied Sciences (Switzerland), 2022, 12, 5437.	1.3	6
104	Non-isothermal kinetic equations applied to crystallization of glasses. Thermochimica Acta, 1993, 227, 125-133.	1.2	5
105	Colouring inorganic oxides in MgOî—,CaOî—,Al2O3î—,SiO2 glass-ceramic systems. Journal of Non-Crystalline Solids, 1993, 155, 231-244.	1.5	5
106	Structural studies on RO-MgO-Al2O3-SiO2 (R = Ca, Sr or Ba) glassy systems by density measurements. Journal of Materials Science Letters, 1994, 13, 180-182.	0.5	5
107	The effect of ZrO2 in 30K2O-70SiO2 glass: a comparison with 30Li2O-70SiO2. Journal of Materials Science, 2003, 38, 2627-2631.	1.7	5
108	Environmental impact estimation of ceramic lightweight aggregates production starting from residues. International Journal of Applied Ceramic Technology, 2021, 18, 353-368.	1.1	5

#	Article	IF	CITATIONS
109	GASIFICATION OF BIOMASS FROM RIVER MAINTENANCE AND CHAR APPLICATION IN BUILDING MATERIALS PRODUCTION. Environmental Engineering and Management Journal, 2018, 17, 2485-2496.	0.2	5
110	Study of barium feldspar polymorphism as a function of temperature and calcium content. Journal of Materials Science, 1995, 30, 373-380.	1.7	4
111	Production of Cement Blocks and New Ceramic Materials with High Content of Glass Waste. Key Engineering Materials, 2015, 663, 34-41.	0.4	4
112	Geopolymerization as Cold-Consolidation Techniques for Hazardous and Non-Hazardous Wastes. Key Engineering Materials, 2017, 751, 527-531.	0.4	4
113	Sintering and phase formation of ceramics based on pre-treated municipal incinerator bottom ash. Open Ceramics, 2021, 5, 100044.	1.0	4
114	Amorphous silica wastes for reusing in highly porous ceramics. International Journal of Applied Ceramic Technology, 2021, 18, 394-404.	1.1	4
115	Cleaner Design and Production of Lightweight Aggregates (LWAs) to Use in Agronomic Application. Applied Sciences (Switzerland), 2021, 11, 800.	1.3	4
116	RF THERMAL PLASMA TREATMENT OF WASTE GLASS AND ITS REUTILIZATION IN COMPOSITE MATERIALS. High Temperature Material Processes, 2006, 10, 207-218.	0.2	4
117	Chelating Agent Treatment on Leaded Residuals from Glass Separated Urban Collection to Be Used in Cement Mortars. Waste and Biomass Valorization, 2018, 9, 2493-2501.	1.8	3
118	Comparison of Three Manufacturing Techniques for Sustainable Porous Clay Ceramics. Materials, 2021, 14, 167.	1.3	3
119	PRELIMINARY STUDY ON VALORIZATION OF SCRAPS FROM THE EXTRACTION OF VOLCANIC MINERALS. Environmental Engineering and Management Journal, 2021, 20, 1599-1610.	0.2	3
120	A New System of Sustainable Silico-Aluminous and Silicate Materials for Cultivation Purpose within Sustainable Buildings: Chemical-Physical, Antibacterial and Cytotoxicity Properties. Applied Sciences (Switzerland), 2022, 12, 434.	1.3	3
121	Sustainable glasses in the SiO2–P2O5–CaO–K2O system from waste and concentrated solar power. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, , .	0.9	3
122	Influence of viscosity on the crystallization of some anorthite-diopside glass precursors. Journal of Materials Science Letters, 1993, 12, 294-296.	0.5	2
123	Physical-chemical characterization of a galvanic sludge and its inertization by vitrification using container glass. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	2
124	PHYSICAL-MECHANICAL PROPERTIES OF NEW GREEN BUILDING MATERIALS BASED ON GLASS WASTE. Environmental Engineering and Management Journal, 2015, 14, 1735-1742.	0.2	2
125	VALORIZATION OF TYRES WASTE PYROLYSIS RESIDUE IN LIGHTWEIGHT MATERIALS. Environmental Engineering and Management Journal, 2016, 15, 1907-1914.	0.2	2
126	DESIGN AND CHARACTERIZATION OF CONTROLLED RELEASE PK FERTILIZERS FROM AGRO-RESIDUES. Environmental Engineering and Management Journal, 2020, 19, 1669-1676.	0.2	2

#	Article	IF	CITATIONS
127	Effect of silicon carbide whisker reinforcement on CaO–ZrO2–SiO2glass–ceramic system. Advances in Applied Ceramics, 2000, 99, 274-277.	0.4	1
128	Eco-Compatible Construction Materials Containing Ceramic Sludge and Packaging Glass Cullet. Applied Sciences (Switzerland), 2021, 11, 3545.	1.3	1
129	Processing Fly Ash from Coal Burning Power Station in a Variable Radiofrequency Field. Ceramic Transactions, 0, , 21-28.	0.1	1
130	VALORIZATION OF GLASS WASTES AS SUPPORT FOR LIPASE IMMOBILIZATION. Environmental Engineering and Management Journal, 2016, 15, 1933-1940.	0.2	1
131	Environmentally Friendly Processes for the Recovery of Gold from Waste Electrical and Electronic Equipment (WEEE): A Review. , 2016, , 173-196.		0
132	Pyrolysis Process for the Recycling of Cork Dust Waste from the Processing of Cork Agglomerate Caps in Lightweight Materials. Applied Sciences (Switzerland), 2022, 12, 5663.	1.3	0